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ABSTRACT 

Peng Geng. Numerical and Theoretical Analysis of Falling Plume Caused by Bioconvection 

of Microorganisms and Its Applications (Under the direction of Dr. Andrey V. Kuznetsov) 

 

The purpose of this research is to analytically and numerically investigate the formation and 

applications of bioconvection caused by microorganisms. The falling plumes in bioconvection with a 

suspension saturated with porous medium are studied theoretically. Utilizing bioconvection to mix 

and uniform solid particles are studied numerically. Large particle settling in bioconvection is also 

included in this research. 

The formation of falling plumes as observed in suspensions of these bacteria in experiments is 

explained in this research. A suspension of motile oxytactic bacteria that consume oxygen and swim 

up the oxygen gradient is considered. A utilized model that is based on a quasi-steady approximation 

is established. Based on the approximate solution, a similarity solution of full governing equations 

that describe fluid flow as well as oxygen and cell transport in the plume is obtained.  

Settling of small solid particles in a suspension of motile gyrotactic microorganisms is investigated 

numerically. Bioconvection induced by the upswimming of microorganisms enhances mixing 

between the particles and leads to a more uniform number density distribution of solid particles across 

the layer depth. The case that a bioconvection suspension that contains two types of particles is 

considered. It is found that the number density distribution of solid particles of one type impacts that 

of particles of the other type as well as that of microorganisms.  

Settling of one or two large solid particles in a bioconvection flow induced by gyrotactic motile 

microorganisms is investigated as well. Chimera method is utilized to generate subgrids around the 

moving particles. Equations for calculating values on moving boundaries in the streamfunction-

vorticity formulation are developed. It is demonstrated that bioconvection can either accelerate or 

decelerate settling of the particle depending on the initial position of the particle relative to the plume 
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center. Settling of one particle can displace bioconvection plume and change its shape. Introducing 

the second particle can either further displace the plume or make this displacement smaller depending 

on the initial releasing positions of the first and second particles. 
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1.  INTRODUCTION 

1.1 BACKGROUND OF BIOCONVECTION OF MICROORGANISMS 
 
Bioconvection is a phenomenon caused by collective swimming in a particular direction of motile 

microorganisms. Most significant results in the area of bioconvection were obtained over the last two 

decades ([1], [2], [3], [4], [5]). Two types of microorganisms are widely considered in bioconvection: 

motile oxytactic bacteria and motile gyrotactic microorganisms. Oxytactic bacteria such as Bacillus 

subtilis, consume oxygen and swim up oxygen gradients. In a deep chamber, because of the limited 

diffusivity of oxygen, oxygen concentration is high only in a thin cell-rich upper boundary layer. 

Since bacteria are heavier than water, the cell-rich upper boundary layer becomes unstable and 

bioconvection plumes develop. Gyrotaxis is the behavior typical for algae, whose swimming direction 

is against gravity in still water, but once bioconvection develops, their swimming direction is 

determined by the balance of two torques: the viscous torque acting on a body placed in a shear flow 

and the torque that is generated by gravity because the center of mass of a typical alga is displaced 

from its center of buoyancy. The density of regions of downflow becomes larger than that of regions 

of upflow.  

Two similarity solutions for a falling plume in bioconvection of oxytactic bacteria in a porous 

medium are covered in Part One (Chapters 2-3); the applications of using gyrotactic microorganisms 

on mixing settling small solid particles is covered in Part Two (Chapters 4-6); the application of using 

gyrotactic microorganisms on settling large solid particles is covered in Part Three (Chapters 7-8). 

1.2 RESERCH ON BIOCONVECTION SEDIMENTATION OF SMALL SOLID 
PARTICLES  

 
Despite a considerable number of theoretical and experimental works on bioconvection, the effect of 

bioconvection on settling of small solid particles has never been studied before. This is an interesting 

topic because it deals with a possible application of bioconvection: the utilization of bioconvection to 
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slow down settling and enhance mixing between particles. The advantage of bioconvection is that it 

provides a simple mechanism for enhancing mixing and slowing down settling in very small fluid 

volumes ([10], [11]). This may be important, for example, in the pharmaceutical and bio-

technological industries to enhance mixing in microvolumes of a fluid. Biotechnology is increasingly 

involved with large numbers of experiments, such as analyses of DNA or drugs, screening of patients, 

and combinatorial synthesis, all of which are processes that often require handling microvolumes of 

fluids. The settling of monodispersed and bidispoersed small solid particles in a suspension of motile 

gyrotactic microorganisms is investigated. It was found that the mixing induced by bioconvection 

leads to a more uniform number density distribution of solid particles along the height of the 

chamber. 

1.3 RESERCH ON BIOCONVECTION SEDIMENTATION OF LARGE SOLID 
PARTICLES 

 
The application of bioconvection is naturally extend from mixing small particles to large 

particles, in which the computational becomes to a much harder one that contains multi-

connected domain with moving boundaries. Chimera method is utilized to decompose the moving 

domain. A new numerical method is developed to simulate the boundary conditions in 

Streamfunction-vorticity formulation. The results of this chapter bring to light the interaction between 

large particles and bioconvection plumes which may be utilized in controlling sedimentation in 

microvolumes. The bioconvection plume that is caused by gyrotactic microorganisms is already fully 

developed during the sedimentation of large particles. Gyrotactic behavior causes these 

microorganisms to accumulate in the regions of most rapid downflow. The effect of periodic 

boundary condition on particle sedimentation is studied and found that the vertical boundaries of the 

domain pushed the particle away from the periodic boundary. 

1.4 INTROUCTION OF PARTS AND CHAPTERS 
 

 2
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This dissertation consists of three parts and nine chapters. Each one of Chapters 2-8 is mainly a 

published or submitted chapter and is relatively independent of each other. In Part One, which 

includes Chapters 2 and 3, the existence of bioconvection plume in a porous medium saturated with a 

suspension of oxytactic bacteria is theoretically predicted. Similarity solutions that describe fluid flow 

as well as oxygen and cell transport in the plume are obtained. Part Two, which includes Chapters 4 – 

6, numerically investigates settling of small solid particles in a suspension of motile gyrotactic 

microorganisms. Bioconvection induced by the upswimming of microorganisms enhances mixing 

between the particles and leads to a more uniform number density distribution of solid particles across 

the layer depth. An optimal size and density of particles are found that effectively slow down 

bioconvection. A very useful parameter called the effective diffusivity of solid particles is firstly 

introduced to evaluate the effect of bioconvection to enhance mixing of small solid particles. Part 

Three, which includes Chapters 7-8, investigates the case that large solid particles settling in 

microorganisms suspension. It is demonstrated that the introduction of a single large particle 

displaces bioconvection plume and changes its shape. The introduction of two particles on the same 

side of the bioconvection plume further displaces the plume while the introduction of two particles on 

opposite sides reduces this displacement. 

Chapter 2 (published as ref. [12]) analytically investigates a similarity solution for a falling 

bioconvection plume in a deep chamber filled with a fluid saturated porous medium. The existence of 

bioconvection plume in a porous medium saturated with a suspension of oxytactic bacteria is 

theoretically predicted. The utilized model is based on a quasi-steady approximation which assumes 

that the timescale for the development of bioconvection plume is much smaller than the timescale for 

the depletion of the cell-rich upper boundary layer. 

Chapter 3 (published as ref. [13]) investigates a similarity solution of full governing equations 

(without utilizing the boundary layer approximation) that describe fluid flow as well as oxygen and 

cell transport in the plume is obtained. The resulting ordinary differential equations are singular when 

 3



www.manaraa.com

the similarity variable approaches zero; therefore, a series solution of these ordinary differential 

equations, which is valid for small values of the similarity variable, is obtained. This series solution is 

used as a starting point for a numerical solution, which makes it possible to investigate the plume for 

the whole range of values of the similarity variable. 

Chapter 4 (published as ref. [13]) numerically investigates the settling of small solid particles in a 

suspension of motile gyrotactic microorganisms. The particles are assumed to be sufficiently small, so 

that the Brownian diffusion is not completely negligible. The formation of almost regular patterns and 

gyrotactic plumes in algal suspensions is documented in numerous experimental papers ([15 – 18]). 

Despite a considerable number of theoretical and experimental works on bioconvection, the effect of 

bioconvection on settling of small solid particles has never been studied before. Computational results 

show that bioconvection induced by the upswimming of microorganisms enhances mixing between 

the particles and leads to a more uniform number density distribution of solid particles across the 

layer depth. 

Chapter 5 (published as ref. [19]) numerically considers a bidispersed suspension of small solid 

particles that have different densities and settling velocities in a fluid that contains motile gyrotactic 

microorganisms. The introduction of the second type of small solid particles (that have a different 

density than particles of the first type) into the suspension that already contains microorganisms and 

particles of the first type does not have much influence on the number density distribution of 

microorganisms. However, the number density distribution of particles of the first type becomes more 

non-uniform. This suggests a useful method of adjusting the number density distribution of particles 

in bioconvection by introducing particles of a different density. It is interesting that this does not 

significantly impact bioconvection. Furthermore, bioconvection is more efficient in mixing solid 

particles, which have smaller settling velocity. With bioconvection, number densities of particles 

attain their steady-state distributions much faster than without bioconvection. 
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Chapter 6 (published as ref. [20]) firstly introduces a very useful parameter named the effective 

diffusivity of solid particles is firstly introduced to evaluate the effect of bioconvection to enhance 

mixing of small solid particles. With the application of effective diffusivity of solid particles, 

numerical results show that: 1) In a monodispersed suspension, increasing the density of particles 

increases the nonuniformity of the number density distribution of particles, which means that 

bioconvection is less effective in mixing suspensions of heavy particles than it is in mixing 

suspensions of light particles. 2) In a bidispersed suspension, the introduction of a second particle 

type decreases the effect of mixing by the bioconvection flow thus making the particle distribution 

more nonuniform. 

Chapter 7 (submitted as ref. [21]) investigates settling of a large solid particle in bioconvection flow 

caused by gyrotactic microorganisms. A subgrid is generated around the moving particle, which is 

called the Chimera method, is utilized. A numerical method based on the streamfunction-vorticity 

formulation for the case of a multi-connected domain with moving boundaries is developed. The 

particle settling changes the shape and location of the bioconvection plume. The particle settling is 

also affected by bioconvection. 

Chapter 8 (submitted as ref. [22]) investigates settling of two large solid particles in bioconvection 

flow caused by gyrotactic microorganisms. It is demonstrated that the introduction of a single large 

particle displaces bioconvection plume and changes its shape. The introduction of two particles on the 

same side of the bioconvection plume further displaces the plume while the introduction of two 

particles on opposite sides reduces this displacement. The influence of the bioconvection plume on 

the particles’ settling paths is investigated. 
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PART ONE  

FALLING PLUME IN BIOCONVECTION OF OXYTACTIC 

BACTERIA IN POROUS MEDIUM 
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2. A SIMILARITY SOLUTION FOR A FALLING PLUME IN 

BIOCONVECTION OF OXYTACTIC BACTERIA IN A POROUS 

MEDIUM 

 

ABSTRACT 
 
The objective of this chapter is to present a similarity solution for a falling bioconvection plume in a 

deep chamber filled with a fluid saturated porous medium. A suspension of motile oxytactic bacteria, 

such as Bacillus subtilis, which swim up the oxygen gradient, is considered. In a deep chamber, 

because of the limited diffusivity of oxygen, oxygen concentration is high only in a thin cell-rich 

upper boundary layer. Since bacteria are heavier than water, the cell-rich upper boundary layer 

becomes unstable and bioconvection plumes develop. The bioconvection plume carries oxygen and 

cells from this cell-rich upper boundary layer to the lower region of the chamber. 

 

2.1 INTRODUCTION 
 
In Metcalfe and Pedley’s recent paper [1], a theory of bioconvection in a suspension of the oxytactic 

bacteria Bacillus subtilis, which consume oxygen and swim up oxygen gradients, was developed. The 

objective of their research was to explain the formation of falling plumes as observed in suspensions 

of these bacteria in the experiments described in Kessler et al. [2] and Hillesdon et al. [3]. 

Metcalfe and Pedley [1] considered an initially well-mixed suspension in a deep chamber. The bottom 

and edges of the chamber are sealed but its upper free surface is open to the air. Since the chamber is 

deep, the oxygen concentration below a certain depth is too small for the bacteria to be active. The 

experimental results demonstrate that there is a thin, cell-rich upper boundary layer caused by 

bacterial swimming up the oxygen gradient towards the free surface. The lower part of the chamber is 
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too far from the free surface; therefore, only very little oxygen can reach this region by diffusion. For 

this reason, the bacteria in this region become inactive when they consume all of the dissolved 

oxygen. The falling plumes provide a convective transport mechanism for oxygen from the upper 

boundary layer. As a result, some of the inactive cells in the lower region of the chamber are 

resuscitated by the oxygen carried by the falling plumes. 

The goal of this chapter is to extend the theory developed in Metcalfe and Pedley [1] to the case 

where the chamber is filled with a fluid saturated porous medium of uniform porosity. Despite the 

potential of porous media to control bioconvection, the number of publications on bioconvection in 

porous media is very limited. An experimental paper by Kessler [4] addressed the utilization of a 

porous medium (a surgical cotton wool) to suppress bioconvection instability. Kuznetsov and 

Avramenko [5] developed a criterion for the critical permeability value of a porous medium. To the 

best of the authors’ knowledge, bioconvection of oxytactic bacteria in porous media, which is 

addressed in this chapter, has never been investigated before. 

 

 

Figure 2-1. Schematic diagram of bioconvection plume in a fluid saturated porous medium 
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2.2 PROBLEM DISCRIPTION 
 
In this chapter, an axisymmetric falling plume is investigated. Following Metcalfe and Pedley [1], the 

orientation of bacteria by viscous forces in a shear flow (gyrotaxis) is neglected, and it is assumed 

that the cells are swimming in a strictly vertical direction and that their upswimming velocity is 

proportional to the gradient of oxygen concentration: 

( ) CCHbWc ∇=V          (2.1) 

where b has dimensions of length,  has dimensions of velocity (the product  assumed to be 

constant), 

cW cbW

( )CH  is the step function, and C is the dimensionless oxygen concentration defined as 

min0

min
~~
~~

CC
CC

C
−

−
=           (2.2) 

where C~  is the oxygen concentration, 0
~C  is the concentration of oxygen at the free surface (assumed 

to be the same as the initial oxygen concentration), and minC~  is a minimum concentration of oxygen 

required for the bacteria to be active. 

Governing equations for this problem are given below. 

Conservation of Cells 

( ) ( nDnn n∇∇=+⋅∇ VU )        (2.3) 

where n is the concentration of cells, U is the filtration velocity vector, and  is the cell 

diffusivity (the diffusion term models the random aspects of cell swimming). Equation (2.3) accounts 

for three possible mechanisms of the transport of the cells: by convection, by upswimming, and by 

diffusion. 

( )CHDD nn 0=
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The plume in the upper part of the chamber, where the oxygen concentration is larger than minC~  and 

all bacteria are actively swimming, is considered. In this part of the chamber C>0; therefore, the step 

function, ( )CH , identically equals to unity and Eq. (2.3) can be presented as: 
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⎛
∂
∂

+
∂
∂

+
∂
∂
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r
n
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nDn

1
2

2

2

2

        (2.4)
 

where r is the radial coordinate, z is the vertically downward coordinate, u is the radial velocity 

component, and v is the vertical velocity component. 

In the upper part of the chamber, the plume is narrow and Eq. (2.4) can be parabolized by neglecting 

terms containing 2

2

z
C

∂
∂ , 2

2

z
n

∂
∂ , and 

z
n

z
C
∂
∂

∂
∂ . This is consistent with the scaling analysis and 

parabolization performed in Metcalfe and Pedley [1]. This results in the following cell conservation 

equation: 
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   (2.5) 

Conservation of Oxygen 

( ) nCDC C γ−∇=⋅∇
~~ 2U         (2.6) 

where  is the oxygen diffusivity and the term CD nγ−  describes the consumption of oxygen by the 

bacteria. To account for the reduction of cell activity in the lower part of the chamber, where cell 

concentration is smaller than in the upper layer, it is assumed that ( ) ( )CHnn fs/0γγ = , where  is 

the concentration of bacteria at the free surface (assumed to be constant) and 

fsn

0γ  is a constant 

characterizing the rate of oxygen consumption by the bacteria. 
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Neglecting the term 2

2

z
C

∂
∂ , Eq. (2.7) is parabolized as: 

C
n

r
C

rr
CD

r
Cu

z
C

C Δ
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⎠
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⎝

⎛
∂
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∂
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+
∂
∂ γ1v 2

2

,      (2.8) 

where min0
~~ CCC −=Δ . 

z-momentum equation 

0v =Δ−+
∂
∂ gn

Kz
p ρθμ ,        (2.9) 

where p is the pressure; K is the permeability of the porous medium; θ  is the average volume of the 

bacterium; ρΔ  is the density difference, 0ρρ −cell ; μ  is the dynamic viscosity, assumed to be 

approximately the same as that of water; and 0ρ  is the density of water. 

r-momentum equation 

0=+
∂
∂ u

Kr
p μ          (2.10) 

Continuity Equation 

0=⋅∇ U          (2.11) 

or 

( ) ( ) 0v1
=

∂
∂

+
∂

∂
zr

ru
r

        (2.12) 

Eliminating the pressure from (2.9) and (2.10) results in: 

0v
=Δ

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂ g

r
n

z
u

rK
ρθμ .       (2.13) 
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Equations (2.5), (2.8), (2.12), and (2.13) must be solved subject to the following boundary conditions. 

Utilizing symmetry about r=0, the following boundary conditions are imposed at r=0: 

0v,0,0,0 =
∂
∂

==
∂
∂

=
∂
∂

r
u

r
C

r
n       (2.14) 

At ∞→r  the following boundary conditions are imposed: 

0v,0,0 →→
∂
∂

→
r
Cn        (2.15) 

Following Metcalfe and Pedley [1], a similarity solution to Eqs. (2.5), (2.8), (2.12), and (2.13) is 

investigated. Assuming that R is the radius of the plume, the following scaling is utilized: 

azR ∝ , , , , and     (2.16) bz∝v czn ∝ dzC ∝ 1−+∝ bazu

Substitution Eqs. (2.16) into Eqs. (2.5), (2.8), (2.12), and (2.13) and equating the powers of z, the 

following solution is obtained: , 1=a 1−=b , 1−=c , and 0=d . The similarity variable η  is then 

defined as: 

z
r

=η           (2.17) 

The new dimensionless functions ( )ηN , ( )ηG , and ( )ηF  are introduced as: 

( )η
θ

NzKn 1
2/1

−= , ( )ηGC = , ( )η
ρ
μψ zF= , ( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
−′= −

η
ηη

ρ
μ FFzu 1 , ( )η

ηρ
μ Fz ′=

−1

v  

           (2.18) 

where stream function is defined as rr/ v=∂∂ψ  and ruz/ −=∂∂ψ . 

Continuity Eq. (2.12) is automatically satisfied. Substituting Eqs. (2.18) into Eqs. (2.5), (2.8), and 

(2.13), the following equations for the dimensionless functions ( )ηN , ( )ηG , and ( )ηF  are obtained: 

( ) 0Pe1PeScPeSc11
=⎥

⎦

⎤
⎢
⎣

⎡ ′′−′−
′

+′⎥
⎦

⎤
⎢
⎣

⎡ ′−++′′ NGGFNGFN
ηηη

   (2.19) 

0Sc11 2 =−′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++′′ NGF

D
D

G
C

n β
η

      (2.20) 

( ) 0Ar1 2 =′−
′

−′′+ NFF η
η

η        (2.21) 
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where prime denotes the derivative with respect to η  and 

2

2/3

Ar,Sc,
W

Pe
μ

ρρ
ρ
μ Δ

===
gK

DD
b

nn

c , 
2

0

θ
γ

β
CnD

K

fsC Δ
=    (2.22) 

In Eqs. (2.22), Pe is the Peclet number, Sc is the Schmidt number, Ar is the Archimedus number, and 

β  is the dimensionless parameter that represents the strength of oxygen consumption relative to its 

diffusion. 

Equations (2.19)-(2.21) must be solved subject to the following boundary conditions, which are 

obtained by transforming the boundary conditions given by Eqs. (2.14) and (2.15): 

At 0=η : , , 0=′N 0=′G 0=−′
η
FF , 02 =

′
−
′′

ηη
FF     (2.23) 

As ∞→η : , , 0=N 0=′G 0=
′

η
F        (2.24) 

An additional condition that the solution must obey can be obtained from Eq. (2.5), which can be 

recast as: 

( ) 0v =
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+
∂
∂ n

z
r

r
nrD

r
CrnbWrnu

r nc      (2.25) 

Integrating Eq. (2.25) from  to 0=r ∞=r  and utilizing boundary conditions yields 

constantv
0

== ∫
∞

nrdrQ         (2.26) 

This condition, first obtained in Metcalfe and Pedley [1], physically means cells do not swim into or 

out of the plume; therefore, the flux of the cells in the z-direction is the same in any cross-section of 

the plume for any value of z. 

It is easy to check that the similarity solution defined by Eqs. (2.18) satisfies this condition. Indeed, 

substituting the first and the fifth of Eqs. (2.18) into Eq. (2.26), the following is obtained: 
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constant
0

2/1

0

2
2/1

=′=
′

= ∫∫
∞∞

− η
ρ
μ

θηρ
μ

θ
dNFKNrdrFzKQ     (2.27) 

where Q is the flux of the bacteria in the z-direction. 

Equation (2.27) can be recast as 

Q
K
QNdF ==′∫

∞

μ
ρθ

η 2/1
0

        (2.28) 

where Q  is the dimensionless flux of the bacteria in the z-direction. 

This condition must be used along with boundary conditions (2.23) and (2.24) in numerical 

integration of Eqs. (2.19)-(2.21). 

Equations (2.19)-(2.21) as well as boundary conditions (2.23) are singular at 0=η . To initiate the 

numerical solution a series solution must be obtained for small η . The following series expansions 

are assumed for functions ( )ηN , ( )ηG′ , and ( )ηF : 

( ) i

i
inN ηη ∑

∞

=

=
0

, ,      (2.29) ( ) i

i
igG ηη ∑

∞

=

=′
0

( ) i

i
ifF ηη ∑

∞

=

=
0

Boundary conditions at 0=η  given by Eqs. (2.23) yield to the following relations: 

031001 ===== fffgn         (2.30) 

It is assumed that  and  to provide for non-zero concentration of bacteria and nonzero 

axial fluid velocity in the center of the plume. The solution is obtained in terms of  and  as: 

00 ≠n 02 ≠f

0n 2f

( ) ( ) 23
0020 PeSc2

4
1 ηβη nnfnN −−=  

( ) { }( )[ ] 4224
002

2
0022

0 Pe4PeScAr62ScArSc42Sc2
64

ηββ nDnDDDfnnffD
D

n
CCnCC

C
+++−+++
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[ ] [ ]( ){ }( ScAr2236ScAr14ArSc24Sc24Sc2
2304

1
0200

2
202

2
2 nfnnfnfD

D C
C

+++−+−+  

[ ]{ Sc3ArSc2642Sc8PeSc 022
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23
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           (2.31) 

( ) ( )[ ] 32
02

2
02

0 Pe2Sc
82

1 ηβββηη nDDDf
D

nnG CnC
C

++−+=′  

[ ( ) [ ] [ ]( ){ }ScAr2422Sc2
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2
0 nDDDDDDDfDDDf
D

n
nCCnnCCnCC

C

+++++++
β  

( ){ } ] 5224
0

2
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0 Pe6PeScAr620 ηββ nDnDDfDfDnD CnCnCC ++++−    

           (2.32) 

( ) ( )[ ] 43
002

2
2 PeArScAr22

16
1 ηβηη nnffF ++−+=  

[ ( ){ }ScArSc414ScAr242
384

1
0202 nfnfD

D C
C

++++  

( ){ } ] 6225
0022

3
0 PeAr4ScArSc1212Sc2PeAr ηββ nDnfDfDn CCn ++++−   (2.33) 

 

2.3 RESULT AND DISCUSSION 
 
Computations are performed for the following values of dimensionless parameters: 1Ar = , 

, , , and . For 1=Cn D/D 10Pe = 20Sc = 610=β 0100 .≤≤η  computations are performed utilizing 

the series solution (2.31)-(2.33), and for 010.>η  Eqs. (2.19)-(2.21) are solved numerically. Details 

of the computational procedure are discussed in Metcalfe and Pedley [1]. The solution is displayed in 

Figs. 2-2(a-c).  
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Figure 2-2. Similarity solution for 610628 −×= .Q : (a) Dimensionless cell concentration, ( )ηN ; (b) 
Dimensionless rate of change of oxygen concentration, ( )ηG′ ; (c) Dimensionless downward fluid 

filtration velocity, ( ) ηη /F ′  

 

Figure 2-2(a) displays the dimensionless concentration of bacteria, ( )ηN . As expected, the cell 

concentration is maximum in the center of the plume and decreases toward its edge. Figure 2-2(b) 

displays the dimensionless rate of change of oxygen concentration, ( )ηG′ , which takes on its 

maximum at some distance from the center of the plume. This is in agreement with the clear fluid 

results presented in [1] and can be explained by the reduction of oxygen concentration in the center of 

the plume because of the large concentration of the cells that consume oxygen. Figure 2-2(c) displays 
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the dimensionless downward fluid filtration velocity, ( ) ηη /F ′ , which takes on its maximum in the 

center of the plume and decreases to zero at the edge of the plume. 

 

2.4 CONCLUSIONS 
 
The existence of bioconvection plume in a porous medium saturated with a suspension of oxytactic 

bacteria is theoretically predicted. The utilized model is based on a quasi-steady approximation which 

assumes that the timescale for the development of bioconvection plume is much smaller than the 

timescale for the depletion of the cell-rich upper boundary layer. Further experimental research is 

needed to confirm the theoretical predictions of this chapter. 
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3. ANALYTICAL INVESTIGATION OF A FALLING PLUME 

CAUSED BY BIOCONVECTION OF OXYTACTIC BACTERIA 

IN A FLUID SATURATED POROUS MEDIUM 

 

ABSTRACT 
 
This chapter investigates a bioconvection plume in a suspension of oxytactic bacteria in a deep 

chamber filled with a fluid saturated porous medium. The plume transports oxygen from the upper 

boundary layer, which is rich in cells and oxygen, to the lower part of the chamber, which is depleted 

of both cells and oxygen. A similarity solution of full governing equations (without utilizing the 

boundary layer approximation) that describe fluid flow as well as oxygen and cell transport in the 

plume is obtained. The resulting ordinary differential equations are singular when the similarity 

variable approaches zero; therefore, a series solution of these ordinary differential equations, which is 

valid for small values of the similarity variable, is obtained. This series solution is used as a starting 

point for a numerical solution which makes it possible to investigate the plume for the whole range of 

values of the similarity variable. 

 

3.1 INTRODUCTION 
 
Bioconvection is a convection motion of fluid that results from the density gradient created by 

collective swimming in a particular direction of motile microorganisms that are heavier than the fluid. 

Although bioconvection is a beautiful phenomenon to observe (Kessler [1, 2], Kessler et al. [3, 4], 

and Harashima et al. [5]), in many practical situations bioconvection must be controlled or 

suppressed. For example, the property of motile microorganisms to swim in a particular direction may 

be used to concentrate the cells, purify cultures, separate different subpopulations (separate fast 

swimmers from slow swimmers and non-swimmers), or separate living and dead cells. In these 
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applications, bioconvection would prevent successful separation because it would cause mixing 

between different types of cells. 

Porous media can be used to control bioconvection. In [6], Kessler suggested and experimentally 

proved that a porous medium (surgical cotton) can be utilized to suppress bioconvection in order to 

separate (eliminate) fungus from Dunaliella cultures and to concentrate vigorous cells of 

Chlamydomonas nivalis and Chlamydomonas rosae. These examples demonstrate the importance of 

investigating bioconvection in porous media and understanding the effect of porous media on 

bioconvection. 

Hillesdon et al. [7] and Kessler et al. [8] describe experiments that show the formation of falling 

plumes in a deep chamber (7 to 8 mm in depth) that contains a suspension of oxytactic bacteria 

Bacillus subtilis. These bacteria consume oxygen and swim up the oxygen gradient as they require 

certain minimum concentration of oxygen to be active. Since the diffusivity of oxygen in water is 

very small, sufficient amounts of oxygen can penetrate by diffusion only in the upper fluid layer. In 

the lower part of the chamber, the bacteria consume all the oxygen keeping the oxygen concentration 

very low; therefore, the bacteria in this region become inactive. The chamber is thus divided into two 

regions, the upper cell-rich boundary layer, which contains actively swimming cells, and the lower 

region of the chamber, where concentration of oxygen is smaller than the minimum concentration and 

cells are therefore inactive. Since the bacteria are heavier than water, the upper cell-rich boundary 

layer becomes unstable, which results in the formation of falling plumes that carry cells and oxygen 

into the lower part of the chamber. The plumes provide for an additional convective transport 

mechanism into the depth of the chamber, which is more efficient than the diffusion transport 

mechanism. The oxygen transported by falling plumes resuscitates some of inactive cells in the lower 

part of the chamber. 

Once bioconvection instability has developed, the falling plumes will eventually deplete the upper 

boundary layer of oxygen and bacteria. However, the timescale for the development of bioconvection 
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plumes is much smaller than for the depletion of the upper boundary layer. Therefore, the plume can 

be assumed quasi-steady and concentrations of oxygen and bacteria at the free surface can be 

assumed constant. Utilizing these assumptions, Metcalfe and Pedley [9] obtained a similarity solution 

for a falling plume in a suspension of oxytactic bacteria in a clear (of solid material) fluid. In a 

communication by Kuznetsov et al. [10], a falling plume in a suspension of oxytactic bacteria in a 

fluid saturated porous medium was investigated. The analyses presented in [9] and [10] were based 

on the parabolization of governing equations that describe fluid dynamics as well as cell and oxygen 

transport in the plume. This chapter attempts to obtain a similarity solution for the bioconvection 

plume in a porous medium utilizing full equations; without neglecting any terms and without 

parabolizing them. 

 

3.2 SIMILARITY TRANSFORMATION 
 
Symmetries of Eqs. (2.4), (2.7), (2.12), and (2.13) are investigated by utilizing the Lie group theory. 

Following the procedure described in Olver [12] it is established that these equations have a 

symmetry group of scaling with the following infinitesimal generator: 

n
n

u
u

z
z

r
r

∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

+
∂
∂

=
v

vq        (3.1) 

Following [12], it is established that the utilization of infinitesimal generator given by Eq. (3.2) 

results in the following self-similar transformation. The similarity variable η  is defined as: 

z
r

=η            (3.2) 

and the new dimensionless functions ( )ηN , ( )ηG , and ( )ηF  are defined as: 
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where the streamfunction is defined as rr/ v=∂∂ψ  and ruz/ −=∂∂ψ . 

The continuity Eq. (2.12) is automatically satisfied. Substituting Eqs. (3.1) into Eqs. (2.4), (2.7), and 

(2.13), the following equations for the dimensionless functions ( )ηN , ( )ηG , and ( )ηF  are obtained: 
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−′′+ NFF η
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where prime denotes the derivative with respect to η  and 

2
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ρΔρ
ρ
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nn

c gK,
D

,
D

b
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2
0

θ
γ

β
CnD

K

fsC Δ
=     (3.7) 

In Eqs. (3.7), Pe is the Peclet number, Sc is the Schmidt number, Ar is the Archimedus number, and 

β  is the dimensionless parameter that represents the strength of oxygen consumption relative to its 

diffusion. 

Equations (3.4)-(3.6) must be solved subject to the following boundary conditions that are obtained 

by transforming the boundary conditions given by Eqs. (2.14) and (2.15): 
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At 0=η :  

0=′N , , 0=′G 0=−′
η
FF , 02 =

′
−
′′

ηη
FF      (3.8) 

As ∞→η :  

0=N , , 0=′G 0=
′

η
F         (3.9) 

An additional condition that the solution must obey can be obtained from Eq. (2.4). Integrating this 

equation with respect to r from zero to infinity and rearranging, the following is obtained: 
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The first integral identically equals zero due to boundary conditions (2.14) and (2.15). It should be 

noted that for the first integral to be zero, the following condition must be satisfied: 

0→
∂
∂

r
nr  as ∞→r         (3.11) 

Although this condition does not formally follow from boundary conditions (2.14) and (2.15), it 

comes from the physics of the process and properties of the solution of Eqs. (3.4)-(3.6). 

From Eq. (3.10) it follows that the integral below is a constant (takes on the same value at any cross-

section independent of z):  

constantWv2
0

=⎥⎦
⎤

⎢⎣
⎡

∂
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−
∂
∂

+= ∫
∞

dr
z
nrD

z
CnrbnrQ ncπ      (3.11) 
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This integral characterizes the flux of the cells in the plume in the z-direction due to advection by the 

bulk flow (the first term in this integral), due to the cells swimming up the oxygen gradient (the 

second term, the cell swimming velocity is given by Eq. (2.1)), and due to cell diffusion (the third 

term). Equation (3.11) thus means that the total flux of the cells in the z-direction due to these three 

factors is the same in any cross-section of the plume for any value of z. The case of parabolized 

equations was investigated in Metcalfe and Pedley [9] for a plume in a clear fluid and in Kuznetsov et 

al. [10] for a plume in a porous medium. It is interesting that the analysis of parabolized equations 

results in a cell flux condition in the following form [9, 10]: 

[ ] constantv2
0

== ∫
∞

drnrQ π         (3.12) 

which means that parabolization of equations results in neglecting the effect of cell swimming and 

cell diffusion on the total cell flux in the plume. 

Each term in Eq. (3.27) can be expressed in terms of similarity functions. The first term is: 
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The second term is: 
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Finally, the third term is: 
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Adding equations (3.13)-(3.15), the following expression for Q through similarity functions is 

obtained: 
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Equation (3.16) can be recast in the dimensionless form as: 
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or 

( )[ constantScPeSc
0

121∫
∞

−− =′++′−′= ηηηη dNNGNFNQ ]     (3.18) 

where Q  is the dimensionless flux of cells in z-direction. 

This condition must be used along with boundary conditions (3.8) and (3.9) in numerical integration 

of Eqs. (3.3)-(3.6). 

3.3 SERIED SOLUTION FOR SMALL SIMILARITY VARIABLE 
 
Equations (3.4)-(3.6) as well as boundary conditions (3.8) are singular at 0=η . To initiate the 

numerical solution a series solution must be obtained for small η . The following series expansions 

are assumed for functions ( )ηN , ( )ηG′ , and ( )ηF : 
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Boundary conditions at 0=η  given by Eqs. (3.8) yield to the following relations: 

031001 ===== fffgn         (3.20) 

It is assumed that  and  to provide for non-zero concentration of bacteria and nonzero 

axial fluid velocity in the center of the plume. The solution is obtained in terms of  and  as: 
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3.4  NUMERICAL RESULTS AND DISCUSSION 
 
For computational results displayed in Figs. 3.1-3.3 the following parameter values are utilized: 

1Ar = , , , , and . Since Eqs. (3.4)-(3.6) and boundary conditions 

(3.8) are singular at 

1=Cn D/D 10Pe = 20Sc = 610=β

0=η , to initiate numerical solution a series solution given by Eqs. (3.21)-(3.23) 

is used. The utilization of this series solution requires an assumption concerning the values of  and 

 that are present as parameters in this series solution. Values of  and  are initially guessed 

and then their values are iteratively improved by the Shooting Method until the boundary conditions 

at 

0n

2f 0n 2f

∞→η  and the integral condition given by Eq. (3.18) are satisfied. Utilizing this series solution, 

computations are performed up to 010.=η . At 010.=η , values of ( )ηN , ( )ηN ′ , ( )ηG ′ , ( )ηF , and 

( )ηF ′  are evaluated utilizing the series solution. These values are used as the initial condition for the 
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numerical solution. For 010.>η , Eqs. (3.4)-(3.6) are solved numerically utilizing RKF45 ordinary 

differential equation solver. 

Figure 3-1 displays the dimensionless cell concentration, ( )ηN , for different values of the 

dimensionless cell flux in z-direction, Q . The increase of Q  corresponds to larger concentration of 

cells, as expected. The width of the plume slightly decreases with the increase of Q . 

η

N
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⎯Q=1x10-4

⎯Q=2x10-4

⎯Q=3x10-4

⎯Q=4x10-4

 

Figure 3-1. Similarity solution: Dimensionless cell concentration, ( )ηN  

Figure 3-2(a) displays the dimensionless rate of change of oxygen concentration, ( )ηG′ , and Fig. 3-

2(b) displays the dimensionless oxygen concentration, ( )ηG , which is computed by integrating ( )ηG′  

assuming that . The oxygen concentration decreases toward the center of the plume. This 

happens because the center of the plume has the largest concentration of cells that consume oxygen. 

( ) 1=∞G
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(b) 

Figure 3-2. Similarity solution: (a) Dimensionless rate of change of oxygen concentration, ( )η'G ; (b) 
Dimensionless oxygen concentration, ( )ηG , computed assuming that  ( ) 1=∞G

This result is in agreement with the clear fluid results obtained in Metcalfe and Pedley [9]. The 

increase of Q  increases the number of the cells in the plume which increases the rate of oxygen 

consumption; therefore, the increase of Q  leads to smaller oxygen concentration in the center of the 

plume. It should be noted that the proposed model is valid only as long as  (or 0>C minC~C~ > ), 
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which is true only in the upper part of the plume, where oxygen concentration around the plume is 

relatively high. In the lower part of the chamber, the oxygen concentration in the bulk of the fluid is 

smaller than minC~ , and the plume will provide the convective mechanism for the oxygen and cell 

transport into the lower part of the chamber. However, the solution obtained in this chapter is valid 

only as long as min
~~ CC > , and this explains why the oxygen concentration in the center of the plume 

is a little smaller than at its edges. 
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(a)     (b) 

Figure 3-3. Similarity solution: (a) Dimensionless streamfunction, ( )η'F ; (b) Dimensionless downward 
fluid filtration velocity, ( ) ηη /'F  

Figure 3-3(a) displays the dimensionless streamfunction, ( )ηF , while Fig. 3-3(b) displays the 

dimensionless downward fluid filtration velocity, ( ) ηη /F ′ . The downward fluid velocity increases as 

Q  increases, as expected; the axial velocity takes its maximum value in the center of the plume and 

decreases to zero at the edge of the plume. 

 

3.5 CONCLUSIONS 
 
A similarity solution of full (non-parabolized) equations describing a falling bioconvection plume in a 

suspension of oxytactic bacteria in a fluid saturated porous medium is obtained. The obtained 
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numerical solutions reveal that the cell concentration increases from the periphery of the plume 

toward its center. Contrary to this, the oxygen concentration decreases from the periphery of the 

plume toward its center. The downward filtration velocity takes on its maximum value in the center of 

the plume. 

 

ACKNOWLEDGEMENTS 
 
AVK gratefully acknowledges the grant # NAG3-2706 awarded to him by NASA Office of 

Biological and Physical Research, Physical Sciences Division. The authors also acknowledge the 

NATO Expert Visit Grant (PST.EV.978144). Critical comments of Prof. D.A. Nield are greatly 

appreciated. 

 

REFERENCES 
 

1. Kessler, J.O.: Hydrodynamic focusing of motile algal cells. Nature 313, 218-220 (1985). 

2. Kessler, J.O.: Cooperative and concentrative phenomena of swimming microorganisms. 

Contemp. Phys. 26, 147-166 (1985). 

3. Kessler, J.O., Wiseley, D.A., Remick, K.E., Marthaler, D.E.: Individual and collective dynamics 

of swimming bacteria, Proceedings of the Workshop “Traffic and Granular Flow’97”, M. 

Schreckenberg and D.E. Wolf, eds, Springer, New York, pp. 37-51 (1997). 

4. Kessler, J.O., Burnett, G.D., Remick, K.E.: Mutual dynamics of swimming microorganisms and 

their fluid habitat, In Nonlinear Science at the Dawn of the 21st Century, P.L. Christiansen, M.P. 

Sorensen and A.C. Scott, eds, pp. 409-426, New York: Springer 2000. 

5. Harashima, A., Watanabe, M., Fujishiro, I.: Evolution of bioconvection patterns in a culture of 

motile flagellates, Phys. Fluids 31, 764-755 (1988). 

 34



www.manaraa.com

6. Kessler, J.O.: The external dynamics of swimming microorganisms. Progress in Phycological 

Research 4, pp. 257-307, Bristol: Biopress 1986. 

7. Hillesdon, A.J., Pedley, T.J., Kessler, J.O.: The development of concentration gradients in a 

suspension of chemotactic bacteria. Bull. Math. Biol. 57, 299-344 (1995). 

8. Kessler, J.O., Hoelzer, M.A., Pedley, T.J., Hill, N.A.: Functional patterns of swimming bacteria. 

In Mechanics and Physiology of Animal Swimming, L. Maddock, Q. Bone, and J.M.V. Rayner, 

eds., pp. 3-12, Cambridge University Press 1994. 

9. Metcalfe, A.M., Pedley, T.J.: Falling Plumes in Bacterial Bioconvection. J. Fluid Mech. 445, 121-

149 (2001). 

10. Kuznetsov, A.V., Avramenko, A.A., Geng, P.: A similarity solution for a falling plume in 

bioconvection of oxytactic bacteria in a porous medium. International Communications in Heat 

and Mass Transfer, submitted. 

11. Pedley, T.J., Hill, N.A., Kessler, J.O.: The growth of bioconvection patterns in a uniform 

suspension of gyrotactic microorganisms. J. Fluid Mech. 195, 223-338 (1988). 

12.  Olver, P.: Applications of Lie Groups to Differential Equations. New York: Springer 1985. 

 

 35



www.manaraa.com

 
 
 
 
 
 

PART TWO 

INTERACTION BETWEEN MICROORGANISMS AND 

SMALL SOLID PARTICLES IN BIOCONVECTION 

SUSPENSION 

 
 

 36



www.manaraa.com

 
 

4. THE INTERACTION OF BIOCONVECTION CAUSED BY 

GYROTACTIC MICROORGANISMS AND SETTLING OF 

SMALL SOLID PARTICLES 

 
 

ABSTRACT 

The purpose of this chapter is to investigate the settling of small solid particles in a 

suspension of motile gyrotactic microorganisms. The particles are assumed to be sufficiently 

small, so that the Brownian diffusion is not completely negligible. Bioconvection induced by 

the upswimming of microorganisms enhances mixing between the particles and leads to a 

more uniform number density distribution of solid particles across the layer depth. 
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NOMENCLATURE 

a radius of a micro-organism, m 

B time scale for the reorientation of microorganisms by the gravitational torque against viscous 

torque, , s ( )mgha /4 3πμ

mD  diffusivity of microorganisms, m2/s 

pD  diffusivity of solid particles due to Brownian diffusion and interactions with microorganisms, 

m2/s 

∗
pD  ratio of the diffusivity of solid particles to diffusivity of microorganisms, mp DD /  

g  gravity vector, 9.81 m/s2

G gyrotaxis number,  2/ LBDm

h displacement of the center of mass of a gyrotactic micro-organism from its center of 

buoyancy, m 

H height of the chamber, m 

∗
mJ  dimensionless flux of microorganisms, defined by equation (4-18a) 

∗
pJ  dimensionless flux of solid particles, defined by equation (4-18b) 

L width of the chamber, m 

mn  number density of microorganisms, 1/m3

mn  average number density of microorganisms, 1/m3

∗
mn  dimensionless number density of microorganisms, mm nn /  

pn  number density of solid particles, 1/m3

pn  average number density of solid particles, 1/m3 

∗
pn  dimensionless number density of solid particles, mp nn /  
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∗
pn  ratio of the average number density of particles to that of microorganisms, mp nn /  

p̂  unit vector indicating the direction of swimming of gyrotactic microorganisms 

ep  excess pressure (above hydrostatic), Pa 

mR  Rayleigh number for microorganisms, ( )mmmm DgLn νρρθ 0
3 /Δ  

pR  Rayleigh number for solid particles, ( )mppm DgLn νρρθ 0
3 /Δ  

cS  Schmidt number, mD/ν  

t time, s 

∗t  dimensionless time,  2/ LtDm

u horizontal velocity component, m/s 

v vertical velocity component, m/s 

v velocity vector, m/s 

mW  average swimming velocity of microorganisms (assumed to be constant), m/s 

∗
mW  dimensionless average swimming velocity of microorganisms,  mm DLW /

pW  particle settling velocity, m/s 

∗
pW  dimensionless particle settling velocity, pp DLW /  

x horizontal coordinate, m 

∗x  dimensionless horizontal coordinate,  Lx /

x̂  unit vector in the x-direction 

y vertical coordinate, m 

∗y  dimensionless vertical coordinate,  Ly /
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ŷ  unit vector in the y-direction 

Greek symbols 

mΔρ  density difference between microorganisms and water, 0ρ−mρ , kg/m3

pΔρ  density difference between solid particles and water, 0ρ−pρ , kg/m3 

ζ  horizontal component of vorticity, 1/s 

∗ζ  dimensionless horizontal component of vorticity,  mDL /2ζ

mθ  volume of a micro-organism, m3

pθ  volume of a particle, m3

Θ  angle between the vertical axis and the swimming velocity of microorganisms 

λ  aspect ratio of the chamber,  LH /

μ  dynamic viscosity, assumed to be approximately the same as that of water, kg/(m s) 

ν  kinematics viscosity, assumed to be approximately the same as that of water, m2/s 

0ρ  density of water, kg/m3

mρ  density of microorganisms, kg/m3

pρ  density of solid particles, kg/m3

ψ  stream function, m2/s 

∗ψ  dimensionless stream function, mD/ψ  
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4.1  INTRODUCTION 

Bioconvection is a phenomenon caused by collective swimming in a particular direction of motile 

microorganisms. Most significant results in the area of bioconvection were obtained over the last two 

decades (Pedley et al., 1988; Ghorai and Hill, 1999; Pedley and Kessler, 1987, 1990, 1992). 

Gyrotactic microorganisms (this behavior is typical for many species of algae) swim against gravity 

in still water, but once bioconvection develops, their swimming direction is determined by the 

balance of two torques: the viscous torque acting on a body placed in a shear flow and the torque that 

is generated by gravity because the center of mass of a typical alga is displaced from its center of 

buoyancy. Algae are approximately 5% denser than water; gyrotactic behavior results in their 

swimming towards the regions of most rapid downflow. Therefore, the regions of downflow become 

denser than the regions of upflow. Buoyancy increases the upward velocity in the regions of upflow 

and downward velocity in the regions of downflow, thus enhancing velocity fluctuations and inducing 

macroscopic convective fluid motion (Pedley et al., 1988; Ghorai and Hill, 1999, 2000). The 

formation of almost regular patterns and gyrotactic plumes in algal suspensions is documented in 

numerous experimental papers (Kessler, 1985a, 1985b and Kessler et al. 1997, 2000). 

Despite a considerable number of theoretical and experimental works on bioconvection, the effect of 

bioconvection on settling of small solid particles has never been studied before. This is an interesting 

topic because it deals with a possible application of bioconvection: the utilization of bioconvection to 

slow down settling and enhance mixing between particles. The advantage of bioconvection is that it 

provides a simple mechanism for enhancing mixing and slowing down settling in very small fluid 

volumes (Ghorai and Hill, 1999, 2000, for example, studied bioconvection in a chamber as small as 

5mm×5mm). This may be important, for example, in the pharmaceutical industry or for the 

development of new medical tests. This statement implies microorganisms not interfering with the 

test and surviving the presence of reactants. 
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This research is concentrated on investigating the settling of solid particles in a dilute suspension that 

contains both gyrotactic microorganisms (whose number density is ) and small particles (whose 

density is ) in a two-dimensional chamber of depth H and width L whose side walls are assumed to 

be shear-free. Both microorganisms and particles are heavier than water. The particles are small, so 

that the Brownian diffusion is not completely negligible. If diffusion were completely negligible, all 

particles would eventually end up at the bottom of the chamber. It is also assumed that particle 

diffusivity, caused by the Brownian motion, is enhanced by the interaction between the particles and 

the swimming microorganisms. Because the suspension is dilute, this interaction is expected to be 

weak. Nevertheless, it cannot be completely neglected; therefore, it is modeled here by increasing the 

particle diffusivity as compared to its value predicted by the Einstein correlation. Stability analysis of 

this suspension is carried out in Kuznetsov and Avramenko (2004). 

mn

pn

The computational domain is shown schematically in Fig. 1(a). The width of the domain is L (the 

coordinate x varies from  to ) and the height of the domain is H (the coordinate y varies 

from 0 to H). The top boundary is assumed to be stress-free and the bottom boundary is rigid (the no-

slip condition is imposed there). The side walls are stress-free to model periodic condition; a wider 

computational domain would produce several identical plumes, it is assumed that the plume spacing 

is L. The question how solid particles may affect the wavelengths of bioconvection patterns requires 

further investigation. 

2/L− 2/L
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(a) 

 

(b) 

Figure 4-1. (a) Computational domain and boundary conditions (b) Swimming direction of a gyrotatic 
microorganism 
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4.2  GOVERNING EQUATIONS 

4.2.1 DIMENSIONAL GOVERNING EQUATIONS 
 
Governing equations are written by extending equations given in Ghorai and Hill (1999, 2000) to 

account for solid particles. The cross-effect between microorganisms and solid particles movement is 

neglected because the suspension is dilute (volume concentrations of both microorganisms and solid 

particles are much smaller than unity). Very slow motion associated with bioconvection flows 

justifies the creeping flow assumption and allows neglecting the inertia terms in these equations. 

x and y- momentum equations: 
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Continuity equation: 
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∂
∂

+
∂
∂
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u v           (4.3) 

Conservation of motile microorganisms: 
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Conservation of solid particles: 
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where  is the diffusivity of microorganisms (this assumes that all random motions of the 

microorganisms can be approximated by a diffusive process);  is the diffusivity of particles due to 

the Brownian motion and interactions with microorganisms (  is smaller than , but still not 

zero);  is the number density of motile microorganisms;  is the number density of solid 

particles;  is the excess pressure above hydrostatic; p  is the unit vector indicating the direction of 

swimming of microorganisms (equations for this vector are given in Pedley et al., 1988); t is the time; 

u and v are the x and y-velocity components, respectively; v is the velocity vector, (u,v);  is the 

vector of microorganisms’ average swimming velocity relative to the fluid (  is assumed to be 

constant); 

mD

pD

pD mD

mn pn

ep ˆ

p̂mW

mW

g
g

pW  is the vector of particles’ settling velocity relative to the fluid (  is assumed to be 

constant, the particles settle straight downward); x and y are the Cartesian coordinates (x is the 

horizontal coordinate and y is the vertical coordinate); 

pW

mρΔ  is the density difference between 

microorganisms and water, 0ρρ −m ; pρΔ  is the density difference between particles and water, 

0ρρ −p ; mθ  is the volume of a micro-organism; pθ  is the volume of a particle; μ  is the dynamic 

viscosity, assumed to be approximately the same as that of water; and 0ρ  is the density of water. 

For spherical particles the settling velocity can be found according to the Stokes law (Batchelor, 

1982), as: 

3/1

4
36 ⎟⎟

⎠

⎞
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⎝

⎛

Δ
=

π
θ

πμ

ρθ

p

pp
p

g
W          (4.7) 

According to Ghorai and Hill (2000), vector p  that determines the swimming direction of a 

gyrotactic micro-organism can be given in terms of the angle 

ˆ

Θ  between the vertical axis and the 
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vector of swimming velocity of the micro-organism (cf. Fig. 4-1(b)), so that 

( ) ( ΘΘ−== cos,sin,ˆ yx ppp ) . Angle Θ  satisfies the following equation: 

B
B

dt
d

2
sinΘ−

=
Θ ζ          (4.8) 

where ζ  is the horizontal component of vorticity and B is the time scale for the reorientation of 

microorganisms by the gravitational torque against viscous resistance. Parameter B was called the 

“gyrotactic orientation parameter” by Pedley and Kessler (1987), it is defined as: 

mgh
aB

34πμ
=           (4.9) 

where h is the displacement of the center of mass of a gyrotactic micro-organism from its center of 

buoyancy, m is the mass of the micro-organism, and a is the radius of the micro-organism. 

4.2.2 DIMENSIONLESS GOVERNING EQUATION 

Utilizing the stream function-vorticity formulation, the governing equations can be recast in 

dimensionless form as follows: 

∗∗ −∇= ψζ 2           (4.10) 
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In Ghorai and Hill (1999, 2000) it is shown that vector p  can be computed as: ˆ
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where . ∗== ζζκ GB

The dimensionless variables in equations (4.10)-(4.13) are: 
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4.2.3 INITIAL AND BOUNDARY CONDITIONS 

Equations (4.10)-(4.13) must be solved subject to the following boundary conditions (cf. Fig. 4-1(a)). 

No-slip boundary condition is imposed at the bottom wall while the top boundary and the side walls 

are assumed to be impermeable to the fluid and stress-free. The assumption that the top surface is 

stress-free implies that the surface tension is negligible and microorganisms do not form a packed 

layer at the top surface. Under these assumptions the boundary conditions can be presented as: 

0=∗ψ  at  ,0* =y λ  and        (4.16a) ,5.0* ±=x
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where λ  is the aspect ratio, , LH /
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All four boundaries of the domain are also impermeable to the fluid, microorganisms, and solid 

particles; therefore, normal fluxes of microorganisms and solid particles are zero through all these 

boundaries: 

0ˆ =⋅∗ yJ m  and  at  0ˆ =⋅∗ yJ p ,0* =y λ        (4.17a) 

0ˆ =⋅∗ xJ m  and  at       (4.17b) 0ˆ =⋅∗ xJ p ,5.0* ±=x

where  and  are the unit vectors in the x- and y-directions, respectively, x̂ ŷ

( ) *** ˆ mmmm nWn ∇−+= ∗∗ pvJ         (4.18a) 

is the dimensionless flux of microorganisms and 
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+= ∗∗

g
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is the dimensionless flux of solid particles. 

Initially, at , it is assumed that the fluid is motionless and the number density distributions of 

microorganisms and solid particles are uniform. As in Ghorai and Hill (1999, 2000), small 

perturbations to these uniform distributions are utilized to ensure that the plume forms in the middle 

of the computational domain. This results in the following initial condition: 

0* =t
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where  and . 510−=ε 2=m

 

4.2.4 NUMBERCAL PROCEDURE 

 
A conservative finite-difference scheme is used to discretize the governing equations. An implicit 

scheme with Euler backward differencing in time and central differencing in space is utilized to 

obtain the transient solutions. A line-by-line tridiagonal matrix algorithm with relaxation is used 

together with an iteration technique to solve the nonlinear discretized equations. A staggered uniform 

grid with the stream function and vorticity stored in one set of nodes and the number densities of 

microorganisms and solid particles stored in another set of nodes is utilized. The grid is chosen so that 

the number density nodes lie in the interior of the computational domain only, whereas those of the 

stream function and vorticity lie in the interior and at the boundary of the domain. The mesh size is 

. Computations are performed at the North Carolina Supercomputing Center utilizing an 

Origin 2400 workstation. CPU time required to investigate plume development until it attains steady-

state for  uniform mesh is about 10 hours. Grid independence of the solution was checked by 

performing a test computation utilizing a uniform 

3636×

3636×

7272 ×  mesh, and the maximum variation of the 

fluid velocity did not exceed 3%. 

 

4.3  RESULTS AND DISCUSSION 
 

Values of physical properties and geometrical parameters utilized in the computations are 

summarized in Table 4-1. Values of dimensionless groups that correspond to these parameter values 
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are given in Table 4-2. The values of particle diffusivity are taken larger than those following from 

the Einstein’s relation that determines the diffusivity of small particles due to the Brownian motion. 

This is done to account for additional random motions of particles that may result from their 

interactions with swimming microorganisms (a particle may be either directly hit by a micro-

organism or it can enter a propulsive stream caused by a swimming micro-organism). 

Table 4-1. Physical properties and geometrical parameters utilized in the computations 

Average number density of 
microorganisms 

mn  1012 cells/m3

Average number density of 
solid particles 

pn  1011 cells/m3

Density of water 0ρ  310 3mkg  
Specific gravity of 
microorganisms 

0ρρmΔ  0.05 

Specific gravity of solid 
particles 

0ρρ pΔ  Fig 4.3-4.8:  0. 25  
Fig 4.9:  0.5 
Fig 4.10:  1 

Volume of a micro-organism mθ  16105 −×  m3

Volume of a particle pθ  16105 −×  m3

Average swimming velocity 
of microorganisms 

Wc 410−  m/s 

Particle settling velocity 
(calculated according to 
equation (4.7)) 

pW  Fig 4.3-4.8:   sm /1032.1 5−×

Fig 4.9:  sm51064.2 −×  
Fig 4.10:   sm /1028.5 5−×

Diffusivity of 
microorganisms 

mD  8105 −×  m2/s 

Diffusivity of particles pD  Fig 4.3-4.6, 4.9, 4.10: 
sm 29105 −×  

Fig 4.7:  sm28101 −×  
Fig 4.8:  sm28105 −×   

Gyrotaxis orientation 
parameter 

B 5  s 

Kinematic viscosity of the 
suspension 

ν 610−  m2/s 

Height of the computational 
domain 

H 0.005 m 

Width of the computational 
domain 

L 0.005 m 
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Table 4-2. Values of dimensionless parameters utilized in computations. 

Dimensionless average 
swimming velocity of 
microorganisms m

mm D
LWW =*  

10 

Dimensionless 
particles settling 
velocity m

pp D
LWW =*  

Fig 4.3-4.8:  1.32 
Fig 4.9:  2.64 
Fig 4.10:  5.28 

Schmidt number 

m
c D

S ν
=  

20  

Gyrotaxis number 
2L

BD
G m=  

210−  

Rayleigh number for 
microorganisms 

m

mmm
m D

gLn
R

νρ
ρθ

0

3Δ
=  

612.5  

Rayleigh number for 
solid particles 

m

ppm
p D

gLn
R

νρ
ρθ

0

3Δ
=  

Fig 4.3-4.8:  3062.5  
Fig 4.9:   6125
Fig 4.10:  12250  

Dimensionless 
diffusivity of particles 

m

p
p D

D
D =*  

Fig 4.3-4.6, 4.9, 4.10: 
 1.0

Fig 4.7:   2.0
Fig 4.8:  1  

Aspect ratio 
L
H

=λ  
1 

Dimensionless average 
concentration of 
particles  m

p
p n

n
n =*  

0.1 

 

The major aim of the presented computations is to investigate the effect of solid particles on 

bioconvection as well as the effect of bioconvection on number density distribution of solid particles 

in the chamber. Without bioconvection, solid particles have exponential distribution across the 

chamber’s depth with the largest number density at the bottom of the chamber (the particles do not all 

settle to the bottom because of the Brownian diffusion). The particle number density distribution can 

be obtained by integrating equation (4.13) for the case when , as: 0/ =∂∂= ∗∗∗ tnpv
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(c)      (d) 

Figure 4-2. Basic case: no solid particles, steady-state plume ( ). (a) Dimensionless number 
of microorganisms, (b) Contours of dimensionless stream function, (c) Fluid velocity vector filed, (d) 

Streamlines 

49825.0=∗t

 52



www.manaraa.com

To evaluate the effect of solid particles on bioconvection, the basic case when there are no solid 

particles in the suspension is first investigated. Figures 4-2(a)-(d) show the dimensionless number 

density of microorganisms (a), the contours of the dimensionless stream function (b), the fluid 

velocity vector filed (c), and the flow streamlines (d) for the case of no solid particles when 

bioconvection plume attains its steady-state (as shown below, this happens at ). 49825.0=∗t

Figures 4-3 to 4-6 display the case with solid particles, computations are carried out for 

5/ =ΔΔ mp ρρ  and . As shown in Table 4-2, for all computations with particles it is 

assumed that the average number density of particles is ten times smaller than that of 

microorganisms, 

1.0/ =mp DD

1.0/ =mp nn . Since the case with solid particles is of major interest for this 

investigation, Figs. 4-3 to 4-6 show the development of the bioconvection plume: Fig. 4-3 shows the 

plume at , Fig. 4-4 shows the plume at , Fig. 4-5 shows the plume at 

, and Fig. 4-6 shows the plume at . In Figs. 4-3 to 4-6, figure (a) shows the 

dimensionless number density of microorganisms, figure (b) shows the dimensionless number density 

of particles, figure (c) shows contours of the dimensionless stream function, and figure (d) shows the 

fluid velocity vector field. Table 4-3 shows the maximum values of the dimensionless number 

densities of microorganisms and particles, 

19825.0=∗t 3.0=∗t

49825.0=∗t 59825.0=∗t

( )max
∗
mn  and ( )

max
∗
pn , and the maximum value of the 

dimensionless stream function, ( )max
∗ψ . As Table 4-3 shows, these three parameters change by no 

more than 2.3% between  and . Therefore, it is assumed that at 

 the plume attains its steady-state. 

49825.0=∗t 59825.0=∗t

49825.0=∗t
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Figure 4-3. Solid particles present,  1.0=
m

p
n

n
, 5=Δ
Δ
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ρ

ρ
, 10

1* =pD  , .           (a) 

Dimensionless number density of microorganisms, (b) Dimensionless number density of particles, (c) 
Contours of dimensionless stream function, (d) Fluid velocity vector field 

19825.0=∗t
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Figure 4-4. Same as Fig. 4-3,  3.0=∗t
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Figure 4-5. Same as Fig. 4-3,  49825.0=∗t
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Figure 4-6. Same as Fig. 4-3,  59825.0=∗t
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Table 4-3.  Maximum values of the dimensionless number densities of microorganisms and particles, as 
well as the maximum value of the dimensionless stream function in the computational domain for the 

case of 5/ =ΔΔ mp ρρ  and  at different time (based on the data shown in Figs. 3-6) 1.0* =pD

∗t  ( )max
∗
mn  ( )

max
∗
pn  ( )max

∗ψ  

0.19825 10.0561 0.453481 0.213259 

0.30000 6.90995 0.700287 2.05947 

0.49825 7.38435 0.962994 1.9235 

0.59825 7.37157 0.941157 1.95196 

 

Figures 4-7 and 4-8 display the steady-state bioconvection plumes for the case of 5/ =ΔΔ mp ρρ  

when  and 1, respectively. Table 4-4 summarizes the maximum values of the 

dimensionless number densities of microorganisms and particles, 

2.0/ =mp DD

( )max
∗
mn  and ( )

max
∗
pn , and the 

maximum value of the dimensionless stream function, ( )max
∗ψ , for the basic case of no solid particles 

(Fig. 4-2) and cases with solid particles (Figs. 4-5, 4-7, and 4-8) for different diffusivities of the 

particles (all cases with particles shown in Table 4-4 are computed for 5/ =ΔΔ mp ρρ ). Number 

density of microorganisms takes on its maximum value at the top of the computational domain, while 

number density of solid particles takes on its maximum value at the bottom of the domain. According 

to boundary conditions (Eq. (4-16a)), the stream function takes on zero value at the boundaries of the 

domain. Since the stream function field is similar for all computed cases, the maximum value of the 

stream function indicates, on average, how strong the fluid velocity in the domain is. Figures 4-5, 4-7, 

and 4-8 and Table 4-4 show that the increase of diffusivity of solid particles results in a more uniform 

distribution of the particles over the depth of the chamber. A much more interesting conclusion is 

obtained by comparing the values of ( )max
∗ψ  for the case of no solid particles and the cases with solid 
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particles of different diffusivities. For all computed cases, the value of ( )max
∗ψ  is the largest for the 

case with no solid particles, which indicates that the presence of solid particles slows down 

bioconvection. Bioconvection is slowed down more efficiently by larger particles that, according to 

the Einstein relation, have smaller diffusivity and, therefore, concentrate near the bottom of the 

chamber. This unexpected result has a simple physical explanation. Bioconvection is caused by 

unstable density stratification that is created by the upswimming of microorganisms that are heavier 

than water. Very small particles (nanoparticles) that have very large diffusivity and whose 

distribution across the depth of the chamber is almost uniform have no impact on density stratification 

and, therefore, have no impact on bioconvection. Larger particles with smaller diffusivity concentrate 

near the bottom of the chamber. Since the particles are heavier than water, they create a more stable 

density stratification partly compensating for the increase of density in the upper fluid layer caused by 

the upswimming of microorganisms. Therefore, larger particles slow down bioconvection more 

effectively than very small particles. Figure 4-11(a) shows number density distributions of small 

particles at steady-state computed for two cases: with no bioconvection (computed utilizing equation 

(4-20)) and with bioconvection (in this case number density distribution is shown in the middle of the 

chamber, at ). Number density distributions shown in Fig. 4-11(a) correspond to the cases that 

are displayed in Figs. 4-5, 4-7, and 4-8 and summarized in Table 4-4. In can be seen that if particle 

diffusivity is very large (the case of 

0=∗x

1/ =mp DD ), the number density distribution of such solid 

particles across the depth of the chamber is almost uniform, which explains why these particles do not 

have considerable impact on bioconvection. However, the conclusion that larger particles slow down 

bioconvection is true only if the particles are not very large (which would imply that they have 

negligible diffusivity) or very heavy (which would imply that they have very large settling velocity). 

Such particles do not have any impact on bioconvection because they simply settle down to the 

bottom. This means that there is an optimum size (optimum diffusivity) of solid particles when they 

slow down bioconvection most efficiently. 
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Figure 4-7. Same as Fig. 4-3, 2.0/ =mp DD  and  (steady-state plume) 49825.0=∗t
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Figure 4-8. Same as Fig. 4-3, 1/ =mp DD  and  (steady-state plume) 49825.0=∗t
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Table 4-4.  Maximum values of the dimensionless number densities of microorganisms and particles, as 
well as the maximum value of the dimensionless stream function in the computational 
domain at steady-state conditions for 5/ =ΔΔ mp ρρ  for different diffusivities of solid 

particles (based on the data shown in Figs. 4-2, 4-5, 4-7, and 4-8) 

 

 ( )max
∗
mn  ( )

max
∗
pn  ( )max

∗ψ  

No solid particles 6.79392 0 2.05603 

1/ =mp DD  7.01507 0.158789 2.00139 

2.0/ =mp DD  7.36259 0.410833 1.93294 

1.0/ =mp DD  7.38435 0.962994 1.9235 

 

Figures 4-9 and 4-10 display the steady-state bioconvection plumes for the case of 1.0/ =mp DD  

when 10/ =ΔΔ mp ρρ  and 20, respectively. Table 4-5 summarizes the maximum values of the 

dimensionless number densities of microorganisms and particles, ( )max
∗
mn  and ( )

max
∗
pn , and the 

maximum value of the dimensionless stream function, ( )max
∗ψ , for the basic case of no solid particles 

(Fig. 4-2) and cases with solid particles (Figs. 4-5, 4-9, and 4-10) for different densities of the 

particles (all cases with particles shown in Table 5 are computed for ). Table 4-5 shows 

that when particles become too heavy and, therefore, settle too fast, they have almost no impact on 

bioconvection. Number density distributions of solid particles in the middle of the chamber that are 

shown in Figs. 4-11(b1, b2) correspond to the cases that are displayed in Figs. 4-5, 4-9, and 4-10 and 

summarized in Table 4-5. (Figure 4-11(b2) shows number density distributions of solid particles close 

to the bottom of the chamber on an enlarged scale.) Figures 4-11(b1, b2) show that heavy particles, 

because of their large settling velocity, just concentrate near the bottom of the chamber (there are 

1.0/ =mp DD
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almost no particles in the rest of the domain). This explains why very heavy particles (the case of 

20/ =ΔΔ mp ρρ ) have almost no impact on bioconvection. 
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Figure 4-9. Same as Fig. 4-3, 10/ =ΔΔ mp ρρ , 1.0/ =mp DD , and  (steady-state plume) 49825.0=∗t
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Figure 4-10. Same as Fig. 4-3, 20/ =ΔΔ mp ρρ , 1.0/ =mp DD , and  (steady-state plume) 49825.0=∗t
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Table 4-5.  Maximum values of the dimensionless number densities of microorganisms and particles, as 
well as the maximum value of the dimensionless stream function in the computational domain at steady-
state conditions for  for different densities of solid particles (based on the data shown in 

Figs. 4-2, 4-5, 4-9, and 4-10) 
1.0/ =mp DD

 

 ( )max
∗
mn  ( )

max
∗
pn  ( )max

∗ψ  

No solid particles 6.79392 0 2.05603 

5/ =ΔΔ mp ρρ  7.38435 0.962994 1.9235 

10/ =ΔΔ mp ρρ  7.25841 2.69321 1.93613 

20/ =ΔΔ mp ρρ  6.81734 4.90278 2.04411 
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Figure 4-11. Distributions of the dimensionless number density of solid particles the middle of the 
chamber (at ) computed with no bioconvection and with bioconvection. (a)  at  for cases 

displayed in Figs. 4-5, 4-7, and 4-8; (b1)  at  for cases displayed in Figs. 4-5, 4-9, and 4-10; (b2) 
Same as (b1), enlarged scale to show number density of solid particles close to the bottom of the chamber 

0=∗x ∗
pn 0=∗x

∗
pn 0=∗x

 

4.4 CONCLUSIONS 
 

It is established that small solid particles that are heavier than water slow down bioconvection. This is 

attributed to the fact that solid particles create a more stable density stratification than 

microorganisms alone. Extremely small particles (nanoparticles) that have negligible settling velocity 

do not have any noticeable impact on bioconvection, very large particles (that have negligible 

diffusivity) or very heavy particles (that have very large settling velocity) also do not have any impact 

on bioconvection because they simply settle to the bottom. However, if the particles are of the 

optimal size and density (gravitational settling must compete with Brownian diffusion to create an 

exponential number density distribution of solid particles with the maximum at the bottom of the 

chamber), these particles can effectively slow down bioconvection. On the other hand, bioconvection 
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makes number density distribution of solid particles more uniform. Further experimental research is 

needed to confirm the theoretical predictions of this chapter. 
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5. SETTLING OF BIDISPERSED SMALL SOLID PARTICLES IN A 

DILUTE SUSPENSION CONTAINUNG GYROTACTIC 

MICROORGANISMS 

 

ABSTRACT 

The motivation of this chapter is to investigate the feasibility of the utilization of bioconvection for 

enhancing mixing in a suspension of small solid particles. This may be important in microfluidic 

applications relevant to biotechnology and medicine, such as analyses of DNA or drugs, screening of 

patients, and combinatorial synthesis. Traditionally, the mixing of fluids in microvolumes has been 

limited to diffusion. Due to the microscopic size of the organisms involved in bioconvection, 

bioconvective flows are a prospective and novel design for microfluidic mixing. This chapter 

considers a bidispersed suspension of small solid particles that have different densities and settling 

velocities in a fluid that contains motile gyrotactic microorganisms. The particles are assumed to be 

sufficiently small so that their Brownian diffusion is not negligible. It is found that the number 

density distribution of solid particles of one type impacts that of particles of the other type as well as 

that of microorganisms. 
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NOMENCLATURE 

a  radius of a micro-organism, m 

A  area of the chamber,  2m

B  time scale for the reorientation of microorganisms by the gravitational torque against 

viscous torque, ( )mgha /4 3πμ , s 

mD   diffusivity of microorganisms, m2/s 

( )
1pD  diffusivity of solid particles of type 1 due to Brownian motion and interactions with 

microorganisms, m2/s 

( )
2pD  diffusivity of solid particles of type 2 due to Brownian motion and interactions with 

microorganisms, m2/s 

( )
1

∗
pD  ratio of the diffusivity of solid particles of type 1 to that of microorganisms, 

( ) mp DD /
1

 

( )
2

∗
pD  ratio of the diffusivity of solid particles of type 2 to that of microorganisms, 

( ) mp DD /
2

 

g   gravity vector, 9.81 m/s2

G  gyrotaxis number,  2/ LBDm

h displacement of the center of mass of a gyrotactic micro-organism from its center of 

buoyancy, m 

H  height of the chamber, m 

*
mJ   dimensionless flux of microorganisms, defined by equation (5.17a) 

( )
1

*
pJ   dimensionless flux of solid particles of type 1, defined by equation (5.17b) 

( )
2

*
pJ   dimensionless flux of solid particles of type 2, defined by equation (5.17c) 
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L  width of the chamber, m 

mn   number density of microorganisms, 1/m3

mn   average number density of microorganisms, 1/m3

*
mn   dimensionless number density of microorganisms, mm nn /  

( )
1pn   number density of solid particles of type 1, 1/m3

( )
1pn   average number density of solid particles of type 1, 1/m3 

( )
1

*
pn   dimensionless number density of solid particles of type 1, ( ) mp nn /

1
 

( )
1

*
pn  ratio of the average number density of particles of type 1 to that of microorganisms, 

( ) mp nn /
1

 

( )
2pn   number density of solid particles of type 2, 1/m3

( )
2pn   average number density of solid particles of type 2, 1/m3 

( )
2

*
pn   dimensionless number density of solid particles of type 2, ( ) mp nn /

2
 

( )
2

*
pn  ratio of the average number density of particles of type 2 to that of microorganisms, 

( ) mp nn /
2

 

p̂   unit vector indicating the direction of swimming of gyrotactic microorganisms 

ep   excess pressure (above hydrostatic), Pa 

mR   Rayleigh number for microorganisms, ( )mmmm DgLn νρρθ 0
3 /Δ  

( )
1pR   Rayleigh number for solid particles of type 1, ( ) ( ) ( )mppm DgLn νρρθ 0

3
11

/Δ  

( )
2pR   Rayleigh number for solid particles of type 2, ( ) ( ) ( )mppm DgLn νρρθ 0

3
22

/Δ  

cS   Schmidt number,  mD/ν

t  time, s 
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*t   dimensionless time,  2/ LtDm

u  horizontal velocity component, m/s 

v  vertical velocity component, m/s 

V  velocity vector, m/s 

*V   dimensionless velocity vector,  mDL /V

mW   average swimming velocity of microorganisms (assumed to be constant), m/s 

*
mW   dimensionless average swimming velocity of microorganisms,  mm DLW /

( )
1pW   settling velocity of particles of type 1, m/s 

( )
1

*
pW   dimensionless settling velocity of particles of type 1, ( ) pp DLW /

1
 

( )
2pW   settling velocity of particles of type 2, m/s 

( )
2

*
pW   dimensionless settling velocity of particles of type 2, ( ) pp DLW /

2
 

x  horizontal coordinate, m 

*x   dimensionless horizontal coordinate,  Lx /

x̂   unit vector in the x-direction 

y  vertical coordinate, m 

*y   dimensionless vertical coordinate, Ly /  

ŷ   unit vector in the y-direction 

 

Greek symbols 

( )*
mnΔ   nonuniformity of number density distribution of microorganisms, defined by Eq. 

(5.21a) 

( )
1

*
pnΔ   nonuniformity of number density distribution of particles of type 1, defined by Eq. 

(5.21b) 
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( )
2

*
pnΔ   nonuniformity of number density distribution of particles of type 2, defined by Eq. 

(5.21c) 

Δρ   density difference between suspension and pure water,  0ρ−suspensionρ , kg/m3

mΔρ   density difference between microorganisms and water, 0ρ−mρ , kg/m3

( )
1pΔρ   density difference between solid particles of type 1 and water, ( ) 01

ρ−pρ , kg/m3 

( )
2pΔρ   density difference between solid particles of type 2 and water, ( ) 02

ρ−pρ , kg/m3

ζ   horizontal component of vorticity, 1/s 

*ζ   dimensionless horizontal component of vorticity,  mDL /2ζ

mθ   volume of a micro-organism, m3

( )
1pθ   volume of a particle of type 1, m3

( )
2pθ   volume of a particle of type 2, m3

λ   aspect ratio of the chamber,  LH /

μ   dynamic viscosity, assumed to be approximately the same as that of water, kg/(m s) 

ν   kinematics viscosity, assumed to be approximately the same as that of water, m2/s 

0ρ   density of water, kg/m3

mρ   density of microorganisms, kg/m3

( )
1pρ   density of solid particles of type 1, kg/m3 

( )
2pρ   density of solid particles of type 2, kg/m3 

suspensionρ  density of the suspension that contains particles and microorganisms 

ψ   stream function, m2/s 

*ψ   dimensionless stream function, mD/ψ  
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5.1 INTRODUCTION 

The aim of this chapter is to investigate the feasibility of utilizing bioconvection to enhance the 

mixing of a bidispersed suspension of small solid particles. This may be important in possible 

applications of bioconvection in the pharmaceutical and bio-technological industries to enhance 

mixing in microvolumes of a fluid. Biotechnology is increasingly involved with large numbers of 

experiments, such as analyses of DNA or drugs, screening of patients, and combinatorial synthesis, 

all of which are processes that often require handling microvolumes of fluids. 

The investigation of bioconvection is relevant to biotechnology in innumerable applications. One 

example of this is microfluidics. Microfluidics is the ability to move, pump, mix, and otherwise 

manipulate microvolumes of fluids. This is applicable to pharmaceuticals, public health, laboratory 

testing, agriculture, etc. At the microscopic scale, controlled mixing of fluids becomes something of a 

challenge as the associated Reynolds number is so small that the flows do not become turbulent. 

Traditionally, the mixing of fluids on such a small scale has been limited to diffusion. Due to the 

microscopic size of the organisms involved in bioconvection (a typical cell volume is ), 

bioconvective flows would seem an ideal and novel design for microfluidic mixing. 

31610 m−

The term bioconvection is used to describe the phenomenon of spontaneous pattern formation in 

suspensions of motile microorganisms. Over the last two decades, many significant results in this 

area, such as Pedley et al. [1], Ghorai and Hill [2], and Pedley and Kessler [3-5], were obtained. 

Microorganisms may swim in a certain direction due to different stimuli such as phototaxis, 

chemotaxis, and gyrotaxis. This chapter considers microorganisms that exhibit gyrotactic behavior. 

Gyrotaxis is the behavior typical for algae, whose swimming direction is determined by the balance 

of gravitational and viscous torques. Algae are approximately 3-5% denser than water; gyrotactic 

behavior results in their swimming towards the regions of most rapid downflow. Therefore, the 

density of regions of downflow becomes larger than that of regions of upflow. Buoyancy increases 
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velocities in both upflow and downflow regions, thus enhancing velocity fluctuations and inducing 

macroscopic convective fluid motion (Pedley et al. [1], Ghorai and Hill [2, 6]). The formation of 

gyrotactic plumes with regular patterns in algal suspensions is described in numerous experimental 

papers (Kessler [7-10]).  

Kuznetsov and Geng [11] investigated the settling of monodispersed small solid particles in a 

suspension of motile gyrotactic microorganisms. It was found that the mixing induced by 

bioconvection leads to a more uniform number density distribution of solid particles along the height 

of the chamber. The aim of this chapter is to investigate the behavior of a bidispersed suspension of 

small solid particles. 

Weiland and McPherson [12] and Fessas and Weiland [13] suggested an interesting technique for 

improving sedimentation rates of solid particles. They suggested adding a second buoyant particulate 

phase to the suspension. It turns out that the presence of buoyant particles leads to a rapid separation 

of the two types of particles into large-scale convection streams, which occur in the vertical direction. 

The velocity of these streams adds to the normal settling velocity of heavy particles, thus increasing 

their sedimentation rate. We would like to emphasize that our computations are restricted to the case 

when both types of particles are heavier than water; therefore, in our case, these streams do not occur. 

This research is concentrated on investigating the evolution of number density distributions of 

microorganisms and particles in a dilute suspension that contains gyrotactic microorganisms (whose 

number density is ) and small particles of types 1 and 2 (whose densities are mn ( )
1pn  and ( )

2pn , 

respectively) in a two-dimensional chamber. The depth of the chamber is H and the width is L. The 

side walls of the chamber are assumed to be shear-free to model the periodic condition (it is assumed 

that there are other plumes and that the typical distance between the plumes is L). Microorganisms 

and particles of both types are slightly heavier than water. Both particles are sufficiently small so that 

their Brownian diffusion prevents their complete settling to the bottom of the chamber.  
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The computational domain and boundary conditions are shown schematically in Fig. 1. The width of 

the domain is L (the coordinate x is changing from 2/L−  to ) and the height of the domain is H 

(the coordinate y is changing from 0 to H). Initially, the microorganisms and particles of both types 

are uniformly distributed in a chamber and the fluid is motionless. The free surface is assumed to be 

stress-free and the bottom wall is rigid (a hydrodynamic no-slip condition is imposed there). The side 

walls are stress-free to model the periodic condition, as discussed above. No flux of microorganisms 

or particles is allowed through any of the chamber’s boundaries. 

2/L

 

5.2 GOVERNING EQUATIONS 

5.2.1 Dimensional Governing Equations 

Governing equations are obtained by extending the equations given in Ghorai and Hill [2, 6] to 

account for the buoyancy force induced by bidispersed solid particles. Since the Reynolds number is 

much smaller than unity, inertia terms in these equations are neglected: 

x and y- momentum equations: 
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Conservation of motile microorganisms: 
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m nDWnn
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Conservation of solid particles: 
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where  is the diffusivity of microorganisms (this assumes that all random motions of 

microorganisms can be approximated by a diffusive process); 

mD

( )
1pD  and ( )

2pD  are the diffusivities 

of particles of type 1 and 2, respectively (both ( )
1pD  and ( )

2pD  are smaller than , but still not 

zero; the diffusivity of particles results from the Brownian motion and interactions with 

microorganisms);  is the number density of motile microorganisms; 

mD

mn ( )
1pn  and ( )

2pn  are the 

number densities of particles of type 1 and 2, respectively;  is the excess pressure (above 

hydrostatic);  is the unit vector indicating the direction of swimming of microorganisms (equations 

for this vector are given in Pedley et al. [1]); t is the time; u and v are the x and y-velocity 

components, respectively; V is the velocity vector, (u, v);  is the vector of microorganisms’ 

average swimming velocity (  is assumed to be constant); 

ep

p̂

p̂mW

mW ( )
g
g

1pW  and ( )
g
g

2pW  are the vectors 

of settling velocities relative to the fluid of particles of type 1 and 2, respectively ( ( )
1pW  and ( )

2pW  

are assumed to be constant, both particles settle straight downward); x and y are the Cartesian 

coordinates (x is the horizontal coordinate and y is the vertical coordinate); mρΔ  is the density 

difference between microorganisms and water, 0ρρ −m ; ( )
1pρΔ  is the density difference between 
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particles of type 1 and water, ( ) 01
ρρ −p ; ( )

2pρΔ  is the density difference between particles of type 2 

and water, ( ) 02
ρρ −p ; mθ  is the volume of a micro-organism; ( )

1pθ  and ( )
2pθ  are the volumes of 

particles of type 1 and 2, respectively; μ  is the dynamic viscosity of the suspension, assumed to be 

approximately the same as that of water since the suspension is dilute; and 0ρ  is the density of water. 

According to the Stokes law (Batchelor [14]), the settling velocity of spherical particles can be found 

as: 
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5.2.2 Dimensionless Governing Equations 

Utilizing stream function-vorticity formulation, the governing equations can be recast in the 

dimensionless form as follows: 
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In Ghorai and Hill [2, 6] it is shown that vector p , which determines the swimming direction of 

microorganisms, can be computed as: 

ˆ

( )

( )

( )
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

=

1,0,1

1,1,

1,0,1

ˆ

2
12

2
12

2
12

κκκ

κκκ

κκκ

p         (5.12) 

where . According to equation (5.12), unit vector p  is a function of vorticity. At the 

initial moment of time, when fluid is motionless, this vector is directed vertically upward (which 

implies that at the initial moment all microorganisms are swimming vertically upward); however, as 

bioconvection develops and the vorticity field becomes non-zero, the direction of this vector deviates 

from strictly vertical; it changes with time and also depends on the location in the chamber. 

∗== ζζκ GB ˆ

Parameter B is called the “gyrotactic orientation parameter”. It is defined by Pedley and Kessler [3] 

as: 

mgh
aB

34πμ
=           (5.13) 

where h is the displacement of the center of mass of a gyrotactic micro-organism from its center of 

buoyancy, m is the mass of the micro-organism, and a is the radius of the micro-organism. 
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The dimensionless variables in equations (5.8)-(5.11) are defined as: 
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5.2.2 Initial and Boundary Conditions 

Equations (5.8)-(5.11) must be solved subject to the following boundary conditions (see Fig. 5-1). A 

no-slip boundary condition is imposed at the bottom wall, while the top boundary and the side walls 

are assumed impermeable to the fluid and stress-free. Under these assumptions the boundary 

conditions can be presented as: 

0* =ψ  at  ,0* =y λ  and        (5.15a) ,5.0* ±=x

where λ  is the aspect ratio of the chamber, , LH /
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Normal fluxes of microorganisms and solid particles are zero through all boundaries of the chamber: 
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where  and y  are the unit vectors in the x- and y-directions, respectively, x̂ ˆ

( ) ***
m ˆ mmm nWn ∇−+= ∗∗ pVJ         (5.17a) 

is the dimensionless flux of microorganisms,  

( ) ( ) ( ) ( ) ( )
1

*
1

*
11

*
1p pp

*
pp nDWn ∇−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∗∗

g
gVJ       (5.17b) 

is the dimensionless flux of solid particles of type 1 and 
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is the dimensionless flux of solid particles of type 2. 

Initially, at , the fluid is assumed motionless and the number density distributions of 

microorganisms and solid particles are assumed uniform. As in Ghorai and Hill [2, 6], small 

perturbations to these uniform distributions are utilized to ensure that the plume forms in the middle 

of the computational domain. This results in the following initial condition: 
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where  and . 510−=ε 2=m

 

Figure 5-1. Computational domain and boundary conditions 
 

5.2.4 Numerical Procedure 

A conservative finite-difference scheme is used to discretize the governing equations. An implicit 

scheme with Euler backward differencing in time and central differencing in space is utilized to 

obtain the transient solutions. A line-by-line tridiagonal matrix algorithm with relaxation is used 

together with an iteration technique to solve the nonlinear discretized equations. A staggered uniform 

grid with the stream function and vorticity stored in one set of nodes and the number densities of 

microorganisms and solid particles stored in another set of nodes is utilized. The grid is chosen so that 

the number density nodes lie in the interior of the computational domain only, whereas those of the 

stream function and vorticity lie in the interior and at the boundary of the domain. Computations are 

performed at the North Carolina State University IBM p690 super computer. CPU time required to 

investigate plume development until it attains its steady-state for a 3636 ×  uniform mesh is about 15 

hours.  
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5.3 RESULTS AND DISCUSSION 
 
Values of physical properties and geometrical parameters utilized in computations are summarized in 

Table 5-1. Values of dimensionless groups that correspond to these parameter values are given in 

Table 5-2. The diffusivities of particles of both types are taken to be about 250 times larger than those 

following from the Einstein’s relation that determines the diffusivity of small particles due to the 

Brownian motion. This is done for three reasons: 1) To account for additional random motions of 

particles that may result from their interactions with swimming microorganisms (a particle may be 

either directly hit by a micro-organism or it can enter a propulsive stream caused by a swimming 

micro-organism); 2) It has been shown (Acrivos et al. [15]) that placing a particle in a shear flow 

results in the particle exhibiting additional diffusivity in the streamwise direction; 3) To introduce 

artificial diffusivity in order to avoid excessive stiffness of the numerical problem. 

Table 5-1. Physical properties and geometrical parameters utilized in computations 

 

Average number density of 
microorganisms 

mn  1012 cells/m3

Average number density of 
solid particles of type 1 

( )
1pn  1015 cells/m3

Average number density of 
solid particles of type 2 

( )
2pn  1015 cells/m3

Density of water 0ρ  310 3mkg  
Density of microorganisms mρ  3101.05× 3mkg  
Density of particles of type 1 ( )

1pρ  31021× 3mkg  
Density of particles of type 2 ( )

2pρ  3106× 3mkg  
Volume of a micro-organism mθ  16105 −×  m3

Volume of a particle of type 1 ( )
1pθ  21105 −×  m3

Volume of a particle of type 2 ( )
2pθ  21105 −×  m3

Average swimming velocity of 
microorganisms 

mW  410−  m/s 

Settling velocity of particles of 
type 1 
(calculated according to 
equation (7a)) 

( )
1pW   

7109011.4 −× m/s 

Settling velocity of particles of 
type 2 

( )
2pW   
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(calculated according to 
equation (7b)) 

7102253.1 −× m/s 

Diffusivity of microorganisms mD  8105 −×  m2/s 
Diffusivity of particles of type 1 ( )

1pD  10105 −×  m2/s 
Diffusivity of particles of type 2 ( )

2pD  10105 −×  m2/s 
Gyrotaxis orientation parameter B 5  s 
Kinematic viscosity of the 
suspension 

ν 610−  m2/s 

Height of the computational 
domain 

H 0.005 m 

Width of the computational 
domain 

L 0.005 m 

 

Table 5-2. Values of dimensionless parameters utilized in computations 

 

Dimensionless average 
swimming velocity of 
microorganisms m

mm D
LWW =*  000.10  

Dimensionless settling 
velocity of particles of 
type 1 

( ) ( )
m

pp D
LWW

11
* =  

4.9001 

Dimensionless settling 
velocity of particles of 
type 2 

( ) ( )
m

pp D
LWW

22
* =  

1.2253 

Schmidt number 

m
c D

S ν
=  20  

Gyrotaxis number 
2L

BD
G m=  

210 −  

Rayleigh number for 
microorganisms 

m

mmm
m D

gLn
R

νρ
ρθ

0

3Δ
=  

612.5 

Rayleigh number for 
solid particles of type 1 ( ) ( ) ( )

m

ppm
p D

gLn
R

νρ

ρθ

0

3
11

1

Δ
=  

2.45 

Rayleigh number for 
solid particles of type 2 ( ) ( ) ( )

m

ppm
p D

gLn
R

νρ

ρθ

0

3
22

2

Δ
=  

0.6125 

Dimensionless 
diffusivity of particles 
of type 1 

( ) ( )
m

p
p D

D
D 1

1
* =  

0.01  

Dimensionless 
diffusivity of particles 
of type 2 

( ) ( )
m

p
p D

D
D 2

2
* =  

0.01  

Aspect ratio 
L
H

=λ  
1 

 84



www.manaraa.com

Dimensionless average 
concentration of 
particles of type 1 

( ) ( )
m

p
p n

n
n 1

1
* =  

1000.0 

Dimensionless average 
concentration of 
particles of type 2 

( ) ( )
m

p
p n

n
n 2

2
* =  

1000.0 

 

The aim of the computations presented in this chapter is to investigate the impact of solid particles on 

bioconvection as well as the effect of solid particles of type 2 on number density distribution of solid 

particles of type 1. Without bioconvection, solid particles would have exponential distribution across 

the chamber’s depth with the largest number density at the bottom of the chamber. The particle 

number density distribution can be obtained by integrating equation (5.11) for the case when 
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In computations presented in Figs. 5-2(a)-(f) and 5-3(a)-(c), particles of type 1 are characterized by 

the following parameters: , ( ) 3
1

1021×=pρ
3/ mkg ( ) 01.0/

1
=mp DD , and 

( ) 51 101 −×=
m

p
θ

θ
. 

Particles of type 2 are characterized by the following parameters: , ( ) 3
2

106×=pρ
3/ mkg

( ) 01.0/
2

=mp DD , and 
( ) 52 101 −×=

m

p
θ

θ
. As shown in Table 2, for all computations with particles 

it is assumed that the average number density of particles of each type is one thousand times larger 
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than that of microorganisms: ( ) 1000/
1

=mp nn  and ( ) 1000/
2

=mp nn . The total volume fraction of 

the solid phase (including particles of both types and microorganisms) in the fluid is , which 

means that the suspension is indeed dilute. Suspensions in which volume fraction of the solid phase is 

less than 1% can be modeled as dilute suspensions [16]. 

4101.5 −×

If bioconvection was neglected and diffusivity of solid particles was assumed negligible, it would 

take 170 minutes for a single particle of type 1 to settle from the top of the chamber to the bottom (to 

go the vertical distance of 0.5 cm). It would take 680 minutes for a particle of type 2 to go the same 

distance. From computations that are shown later on, which do account for bioconvection, one can 

see that it takes much shorter time for the number densities of solid particles to attain their steady-

state distributions. 

Figures 5-2(a)-(f) show the dimensionless number density of microorganisms, , the dimensionless 

number density of particles of type 1, 

∗
mn

( )
1

*
pn , the dimensionless number density of particles of type 2, 

, and the ratio of the difference between densities of the suspension and water to that of water, ( )
2

*
pn

0ρρΔ , at different moments of time ( , 0.25, 0.30, 0.65, 1.2, 3.2, respectively). 001.0=∗t 0ρρΔ , 

which is shown in Fig. 5-2, is calculated as: 
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Since bioconvection is induced by unstable density stratification caused by the upswimming of 

microorganisms, the distribution of 0ρρΔ  characterizes the driving mechanism of bioconvection. 

Bioconvection will proceed only as long as 0ρρΔ has a local maximum in the upper region of the 

chamber, which manifests unstable density stratification. 
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In Figs. 5-2(a)-(f), number density distributions start their development from the initial uniform 

distributions. Initially, there is no convection, microorganisms just swim upward and particles simply 

settle downward, as seen in Fig. 5-2(a). The upswimming of microorganisms results in a maximum 

value of 0ρρΔ  occurring at the upper surface of the chamber. In Figure 5-2(b), which is computed 

for , one can see how the plume begins to develop in the upper part of the chamber. The 

number density of microorganisms takes on its maximum value in the center of the upper surface of 

the chamber, where it is not uniform any more as it was at  (cf. Fig. 5-2(a)). Number 

density distributions of solid particles are affected by bioconvection as well. The number densities of 

particles take on their maximum values at the bottom of the chamber; the minimum values occur at 

the center of the upper surface of the chamber. As seen in Fig. 5-2(c), at a later stage of plume 

development (at ) microorganisms concentrate in the center of the upper part of the chamber, 

25.0* =t

001.0* =t

3.0* =t

0ρρΔ  takes on its maximum value at the upper surface in the center of the chamber, the fluid in the 

center starts moving downward (because of the bouyancy force), and the bioconvection plume 

develops over the whole height of the chamber. The plume involves microorganisms and particles of 

both types in a convective motion, enhances mixing in the suspension, and makes number density 

distributions more uniform. The local maxima of particle number densities occur in the center of the 

chamber. Figure 5-2(d) shows that the number density of microorganisms has not changed much 

compared to what it was in Fig 5-2(c). This is because the number density of microorganisms is 

already close to its steady-state. Particles are getting involved in convection as they settle down. 

Maximum number densities of particles occur at the corners near the bottom of the chamber. Particles 

of type 1 exhibit larger number density at the bottom of the chamber than particles of type 2. That is 

because particles of type 1 have a larger density than particles of type 2; therefore, their settling 

velocity is larger than that of particles of type 2. The minimum concentrations of particles occur near 

the center of the upper surface of the chamber. Particles of type 2 have a more uniform concentration 

than particles of type 1. This shows that bioconvection produces a more significant mixing effect on 
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particles that have smaller settling velocity. As particles are settling down, more particles concentrate 

in the lower part of the chamber. This can be seen in Figs. 5-2(e)-(f). From analyzing Figs. 5-2(e) and 

5-2(f), one can conclude that the maximum difference in particle number densities between 

corresponding points is less than . Therefore, it is reasonable to say that Fig. 5-2(f) shows the 

steady-state of the process. At steady-state, the global maximum of 

410−

0ρρΔ  gets shifted to the bottom 

of the chamber. However, a local maximum of 0ρρΔ  at the upper boundary remains, and this drives 

bioconvection. 
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(c)  30.0=∗t
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(d)  65.0=∗t
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(e)  2.1=∗t
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(f)  2.3=∗t
 

Figure 5-2. Distributions of the dimensionless number densities of microorganisms, ( ), particles of 

type 1, (

∗
mn

( )
1

∗
pn ), particles of type 2, ( ( )

2
∗
pn ), and the ratio of the difference between densities of the 

suspension and water to that of water, ( 0ρρΔ ), at different moments of time: (a) , (b) 

, (c) , (d) , (e) , (f)  

001.0=∗t
25.0=∗t 30.0=∗t 65.0=∗t 2.1=∗t 2.3=∗t

 

One of the aims of this chapter is to investigate whether bioconvection helps to make the number 

density distribution of solid particles more uniform. To evaluate how far or close the number density 

distribution is from the uniform one, a parameter called nonuniformity is introduced. This is a 

dimensionless parameter that characterizes how far a number density distribution is from the uniform 
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one. Nonuniformities of number density distributions of microorganisms, solid particles of type 1, 

and solid particles of type 2, respectively, are defined as follows: 
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where A is the dimensionless area of the chamber. The nonuniformity parameters defined by Eqs. 

(5.21a-c) make it possible to measure the distance between the number density distribution of (for 

example) particles of type 1 that occurs at a certain moment of time and the uniform distribution of 

these particles that occurs at t = 0. (The reader will note that the definition of nonuniformity given by 

Eqs. (5.21a-c) is equivalent to the distance between functions in the -space.) 2L

Figures 5-3(a)-(c) display nonuniformity versus time for the cases when the suspension includes solid 

particles only (no microorganisms), solid particles of one type and microorganisms (the two 

monodispersed cases), and solid particles of both types and microorganisms (the bidispersed case). 

Figure 5-3(a) displays the nonuniformity of number density distribution of microorganisms versus 

time. Figure 5-3(b) shows the nonuniformity of number density distribution of particles of type 1 

versus time. Figure 5-3(c) displays the nonuniformity of number density distribution of particles of 

type 2 versus time. Figure 5-3(a1) shows that the nonuniformity of number density distribution of 

microorganisms for the case of a bidispersed suspension is slightly larger than that for the two cases 

with monodispersed particles (of types 1 and 2, respectively). To show the behavior of the 
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nonuniformity of microorganisms for  more clearly, Fig. 5-3(a2) displays the same curves 

that have already been shown in Fig. 5-3(a1) using a larger scale for both vertical and horizontal axes. 

The difference between the monodispersed and bidispersed cases is explained as follows. It occurs 

because increasing the number of particles in the suspension makes density stratification more stable 

(heavy particles concentrate at the bottom of the chamber), thus decreasing the intensity of 

bioconvection. The number density distribution of microorganisms is more non-uniform for the case 

of a bidispersed suspension of solid particles (there are twice more particles, and, therefore, 

bioconvection is weaker). It is also interesting that oscillations of nonuniformity are observed in Fig. 

5-2(a2), which indicates that the steady-state of the plume is approached in an oscillatory manner 

rather then monotonically. 

2.0* >t

A dramatic change in the nonuniformity of number density distribution of particles of type 1 between 

the case that does not have microorganisms in the suspension and the two cases that do have 

microorganisms in the suspension is displayed in Fig. 5-3(b1). The nonuniformity of number density 

distribution of particles of type 1 is much smaller if microorganisms are present in the suspension. 

With bioconvection, the particles need a much shorter time to attain the steady-state distribution 

compared to the case with no bioconvection. Figures 5-3(b1) and (c) show that at  the number 

densities of particles of types 1 and 2 for the cases without microorganisms are still far from their 

steady-states. However, for the cases with microorganisms, particles are mixed more efficiently and 

attain their steady-state distributions mush faster. Furthermore, the number density of solid particles 

of type 1 is more non-uniform if solid particles of type 2 are introduced in the suspension. To see the 

difference between the monodispersed and the bidispersed cases more clearly, Fig. 5-3(b2) shows the 

same curves that are displayed in Fig. 5-3(b1) using a larger scale for the vertical axis. Figure 5-3(c) 

shows that the nonuniformity of number density distribution of particles of type 1, for the case of the 

suspension that does not contain microorganisms, is larger than for the two other cases that do contain 

microorganisms in the suspension. This figure also shows that the nonuniformity of the number 

2.3* =t
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density distribution of particles of type 2 in a bidispersed suspension is higher than that in a 

monodispersed suspension of particles of type 2 only. The difference is larger than that in Figs. 5-

3(b1) and (b2), meaning that microorganisms have a more profound effect on the number density 

distribution of particles that have smaller settling velocity (particles of type 2) than on particles that 

have larger settling velocity (particles of type 1). It is also seen that solid particles with a larger 

density (particles of type 1) have a more profound effect on the number density distribution of 

particles with a smaller density (particles of type 2). 
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Figure 5-3. Nonuniformities of number density distributions of microorganisms ((a1) and (a2)), particles 
of type 1 ((b1) and (b2)), and particles of type 2 (c) 
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5.4 CONCLUSIONS 
 
The introduction of the second type of small solid particles (that have a different density than 

particles of the first type) into the suspension that already contains microorganisms and particles of 

the first type does not have much influence on the number density distribution of microorganisms. 

However, the number density distribution of particles of the first type becomes more non-uniform. 

This suggests a useful method of adjusting the number density distribution of particles in 

bioconvection by introducing particles of a different density. It is interesting that this does not 

significantly impact bioconvection. Furthermore, bioconvection is more efficient in mixing solid 

particles which have smaller settling velocity. With bioconvection, number densities of particles 

attain their steady-state distributions much faster than without bioconvection. Further experimental 

research is needed to confirm the numerical predictions of this chapter. 
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6. INTRODUCING THE CONCEPT OF EFFECTIVE 

DIFFUSIVITY TO EVALUATE THE EFFECT OF 

BIOCONVECTION ON SMALL SOLID PARTICLES 

 

ABSTRACT 
 
The effect of bioconvection to enhance mixing of small solid particles is evaluated by introducing a 

new parameter called the effective diffusivity of solid particles. The effective diffusivity is computed 

by matching (at steady state) the nonuniformities of number density distributions of small solid 

particles computed with and without bioconvection. Applications of bioconvection to enhance mixing 

of small solid particles may include microfluidic applications relevant to biotechnology and medicine, 

such as the analysis of blood samples when only limited volumes of blood can be extracted. Other 

applications including analyses of DNA or drugs, screening of patients, and combinatorial synthesis 

are very interesting as well. This chapter considers monodispersed and bidispersed suspensions of 

small particles in a fluid that contains motile gyrotactic microorganisms. The particles are assumed to 

be sufficiently small so that their Brownian diffusion is not negligible. It is shown that the effective 

diffusivity is a good parameter to evaluate the mixing effect of bioconvection.  
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NOMENCLATURE 
 
a  radius of a microorganism, m 

A  area of a vertical cross-section of the chamber,  2m

B  time scale for the reorientation of microorganisms by the gravitational torque against 

viscous torque, ( )mgha /4 3πμ , s 

mD   diffusivity of microorganisms, m2/s 

( )
ipD  diffusivity of solid particles of type i due to Brownian diffusion and interactions with 

microorganisms, m2/s 

( )
ipD∗  ratio of the diffusivity of solid particles of type i to that of microorganisms, 

( ) mip DD /  

( )'*
ipD   dimensionless effective diffusivity of particles of type i 

g   gravity vector, 9.81 m/s2

G  gyrotaxis number,  2/ LBDm

h displacement of the center of mass of a gyrotactic micro-organism from its center of 

buoyancy, m 

H  height of the chamber, m 

*
mJ   dimensionless flux of microorganisms, defined in equation (6.17a) 

( )
i

*
pJ   dimensionless flux of solid particles of type i, defined in equation (6.17b) 

L  width of the chamber, m 

mn   number density of microorganisms, 1/m3

mn   average number density of microorganisms, 1/m3

*
mn   dimensionless number density of microorganisms, mm nn /  
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( )
ipn   number density of solid particles of type i, 1/m3

( )
ipn   average number density of solid particles of type i, 1/m3 

( )
ipn*   dimensionless number density of solid particles of type i, ( ) mip nn /  

( )
ipn *  ratio of the average number density of particles of type i to that of microorganisms, 

( ) mip nn /  

( )'*
ipn  dimensionless number density of solid particles of type i in the suspension without 

microorganisms 

p̂   unit vector indicating the direction of swimming of gyrotactic microorganisms 

ep   excess pressure (above hydrostatic), Pa 

mR   Rayleigh number for microorganisms, ( )mmmm DgLn νρρθ 0
3 /Δ  

( )
ipR   Rayleigh number for solid particles of type i, ( ) ( ) ( )mipipm DgLn νρρθ 0

3 /Δ  

cS   Schmidt number,  mD/ν

t  time, s 

*t   dimensionless time,  2/ LtDm

u  horizontal velocity component, m/s 

v  vertical velocity component, m/s 

V  velocity vector, m/s 

*V   dimensionless velocity vector,  mDL /V

mW   average swimming velocity of microorganisms (assumed to be constant), m/s 

*
mW   dimensionless average swimming velocity of microorganisms,  mm DLW /

( )
ipW   settling velocity of particles of type i, m/s 

( )
ipW *   dimensionless settling velocity of particles of type i, ( ) pip DLW /  
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x  horizontal coordinate, m 

*x   dimensionless horizontal coordinate,  Lx /

x̂   unit vector in the x-direction 

y  vertical coordinate, m 

*y   dimensionless vertical coordinate, Ly /  

ŷ   unit vector in the y-direction 

 

Greek symbols 

( )*
mnΔ   nonuniformity of the number density distribution of microorganisms, defined in Eq. 

(6.19a) 

( )*
ipnΔ   nonuniformity of the number density distribution of particles of type i, defined in Eq. 

(6.19b) 

( )*'
ipnΔ   nonuniformity of the number density distribution of particles of type i in a suspension 

without microorganisms 

Δρ   density difference between the suspension and pure water,  0ρ−suspensionρ , kg/m3

mΔρ   density difference between microorganisms and water, 0ρ−mρ , kg/m3

( )
ipΔρ   density difference between solid particles of type i and water, ( ) 0ρ−ipρ , kg/m3 

ζ   horizontal component of vorticity, 1/s 

*ζ   dimensionless horizontal component of vorticity,  mDL /2ζ

mθ   volume of a microorganism, m3

( )
ipθ   volume of a particle of type i, m3

λ   aspect ratio of the chamber,  LH /

μ   dynamic viscosity, assumed to be approximately the same as that of water, kg/(m s) 
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ν   kinematics viscosity, assumed to be approximately the same as that of water, m2/s 

suspensionρ  density of the suspension, kg/m3

0ρ   density of water, kg/m3

mρ   density of microorganisms, kg/m3

( )
ipρ   density of solid particles of type i, kg/m3 

ψ   stream function, m2/s 

*ψ   dimensionless stream function, mD/ψ  
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6.1 INTRODUCTION 
 
Biotechnology is increasingly involved with large numbers of experiments, which often require 

handling microvolumes of fluids. Utilizing bioconvection to enhance mixing of small solid particles 

may be very useful in pharmaceutical and bio-technological applications. A typical study volume in 

this chapter is  while  is the minimum volume for most conventional biochemistry 

microvolume analyzers (Kashiwagi and Sakoda, 2001). 

3910 m− 3810 m−

The term bioconvection is used to describe the phenomenon of the spontaneous pattern formation in 

suspensions of living microorganisms. Due to the microscopic size of the organisms involved in 

bioconvection (a typical cell volume is ), bioconvective flows would seem an ideal and novel 

design for microfluidic mixing. Many significant results in bioconvection, such as Pedley et al. 

(1988), Ghorai and Hill (1999), and Pedley and Kessler (1987, 1990, 1992), were obtained over the 

last two decades. However, using bioconvection to enhance mixing of small solid particles has not yet 

been studied in sufficient detail. 

31610 m−

Motile microorganisms may swim in a particular direction due to different stimula such as phototaxis, 

chemotaxis, and gyrotaxis. This chapter considers gyrotactic microorganisms. Gyrotaxis is the 

behavior typical for algae, whose swimming direction is determined by the balance of gravitational 

and viscous torques. Gyrotactic behavior results in the accumulation of the algae in the regions of 

most rapid downflow. Because the algae are 3-5% more dense than water, the density of regions of 

downflow becomes larger than that of regions of upflow. Buoyancy increases velocities in both 

upflow and downflow regions, thus velocity fluctuations are enhanced and a macroscopic convective 

fluid motion is induced (Pedley et al., 1988; Ghorai and Hill, 1999, 2000). This macroscopic 

convection fluid motion causes the development of bioconvection plumes. Numerous experimental 

papers (Kessler, 1985a, 1985b; Kessler et al., 1997, 2000) have described the formation of gyrotactic 

plumes with regular patterns in algal suspensions.  
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Kuznetsov and Geng (2003) investigated the settling of monodispersed (all particles have the same 

size and density) small solid particles in a suspension of motile gyrotactic microorganisms. It was 

found that the mixing induced by bioconvection leads to a more uniform number density distribution 

of solid particles along the height of the chamber. Geng and Kuznetsov (2003) studied the setting of 

bidispersed (the suspension includes two different particle types of different sizes and densities) small 

solid particles in a suspension of microorganisms as well as the effect of particle density ratio. Neither 

of the above two studies considered a method to quantify the effect that bioconvection has on making 

the distribution of solid particles more uniform. 

This chapter introduces a new parameter, the effective diffusivity, and uses it to evaluate the effect of 

bioconvection to enhance mixing of both monodispersed and bidispersed suspensions of small solid 

particles. A higher effective diffusivity compared to the real diffusivity of solid particles shows that 

bioconvection has a profound effect on mixing.  

Here effective diffusivity is calculated from the evolution of number density distributions of 

microorganisms ( ) and number density distributions of small particles of types i (mn ( )
ipn ) in a dilute 

suspension. The bioconvection plume formations are assumed to occur periodically and it is assumed 

that the distance between consecutive plumes is L. To model the mixing a two-dimensional chamber 

of height H and width L (to represent the distance between plumes) is utilized. The side walls of the 

chamber are assumed to be shear-free in order to model the plumes’ assumed periodic condition. 

The computational domain and boundary conditions are shown schematically in Fig. 1. The width of 

the domain is L (the coordinate x varies from 2/L−  to ) and the height of the domain is H (the 

coordinate y varies from 0 to H). Initially the microorganisms and particles are uniformly distributed 

in the chamber and the fluid is motionless. The free surface is assumed to be stress-free and the 

bottom wall is rigid (a hydrodynamic no-slip condition is imposed there). The side walls are stress-

2/L

 106



www.manaraa.com

free to model the periodic condition, as discussed above. No flux of microorganisms or particles is 

allowed through any of the chamber’s boundaries. 

6.2 GOVERNING EQUATIONS 
 
6.2.1 Dimensional Governing Equations 
 
To account for the buoyancy force induced by the solid particles governing equations are derived by 

modifying the governing equations that are given in Ghorai and Hill (1999, 2000). Inertia terms in 

these equations are neglected because the Reynolds number is much smaller than unity: 

x and y- momentum equations: 
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where the subscript  denotes the particle type. In this chapter, particle types are marked as 1, 2, 3, 4, 

5, and 6. In monodispersed cases there is only one component in the summation. In bidispersed cases 

there are two particle types in the summation depending on which two are present, such as 1 and 4, or 

2 and 4, etc. 

i

Continuity equation: 

0v
=

∂
∂

+
∂
∂

yx
u           (6.3) 

Conservation of motile microorganisms: 

( ) ( mmmmm
m nDWnn
t

n
∇−+−=

∂
∂

pV ˆdiv )        (6.4) 
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Conservation of solid particles of type i: 

( ) ( ) ( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−+−=

∂

∂
ipipipipip

ip nDWnn
t

n

g
gVdiv      (6.5) 

where  is the diffusivity of microorganisms (this assumes that all random motions of 

microorganisms can be approximated by a diffusive process); 

mD

( )
ipD  is the diffusivity of particles of 

type i (all ( )
ipD  are smaller than , but still not zero; the diffusivity of particles results from the 

Brownian motion and interactions with microorganisms);  is the number density of motile 

microorganisms; 

mD

mn

( )
ipn  is the number densities of particles of type i;  is the excess pressure (above 

hydrostatic);  is the unit vector indicating the direction of swimming of microorganisms (equations 

for this vector are given in Pedley et al., 1988); t is the time; u and v are the x and y-velocity 

components, respectively; V is the velocity vector, (u, v);  is the vector of microorganisms’ 

average swimming velocity (  is assumed to be constant); 

ep

p̂

p̂mW

mW ( )
g
g

ipW  is the vector of settling 

velocity (relative to the fluid) of particles of type i (for all particles types, ( )
g
g

ipW  is assumed to be 

constant, particles settle straight downward); x and y are the Cartesian coordinates (x is the horizontal 

coordinate and y is the vertical coordinate); mρΔ  is the density difference between microorganisms 

and water, 0ρρ −m ; ( )
ipρΔ  are the density difference between particles of type i and water, 

( ) 0ρρ −
ip ; mθ  is the volume of a micro-organism; ( )

ipθ  is the volume of a particle of type i; μ  is 

the dynamic viscosity of the suspension, assumed to be approximately the same as that of water since 

the suspension is dilute; and 0ρ  is the density of water. 

According to the Stokes law (Batchelor, 1982), the settling velocity of spherical particles can be 

found as: 
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6.2.2 Dimensionless Governing Equations 
 
Utilizing the stream function-vorticity formulation, the governing equations can be recast in the 

dimensionless form as follows: 

∗∗ −∇= ψζ 2           (6.8) 
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Ghorai and Hill (1999, 2000) have shown that the vector p , which determines the swimming 

direction of microorganisms, can be computed as: 
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where . The parameter B is called the “gyrotactic orientation parameter.” It is defined 

in Pedley and Kessler (1987) as: 

∗== ζζκ GB
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mgh
aB

34πμ
=           (6.13) 

where h is the displacement of the center of mass of a gyrotactic microorganism from its center of 

buoyancy, m is the mass of the microorganism, and a is the radius of a microorganism. 

The dimensionless variables in equations (6.8)-(6.11) are defined as: 
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6.2.3 Initial and Boundary Conditions 
 
Equations (6.8)-(6.11) must be solved subject to the following boundary conditions. The no-slip 

boundary condition is applied at the bottom wall. The top boundary and the side walls are assumed to 

be impermeable to the fluid and stress-free. Under these assumptions the boundary conditions can be 

presented as: 

0* =ψ  at  ,0* =y λ  and        (6.15a) ,5.0* ±=x

where λ  is the aspect ratio of the chamber, , LH /

0=
∂
∂

∗

∗

y
ψ  at          (6.15b) ,0* =y
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Normal fluxes of microorganisms and solid particles are zero through all boundaries of the chamber: 

0ˆ =⋅ yJ*
m  and ( ) 0ˆ* =⋅ yJ p i

 at  ,0* =y λ       (6.16a) 

0ˆ =⋅ xJ*
m  and ( ) 0ˆ* =⋅ xJ p i

at       (6.16b) ,5.0* ±=x

where  and y  are the unit vectors in the x- and y-directions, respectively, x̂ ˆ
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is the dimensionless flux of microorganisms,  
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is the dimensionless flux of solid particles of type i. 

Initially, at , the fluid is assumed motionless and the number density distributions of 

microorganisms and solid particles are assumed uniform. As in Ghorai and Hill (1999, 2000), small 

perturbations to these uniform distributions are used to ensure that the plume forms in the middle of 

the computational domain: 
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where  and . 510−=ε 2=m

 111



www.manaraa.com

 

Figure 6-1. Computational domain and boundary conditions 

 
 
6.2.4 Nonuniformity and Effective Diffusity 

To evaluate the effect that bioconvection has on the mixing of solid particles, a dimensionless 

parameter called nonuniformity (first introduced in Geng and Kuznetsov, 2003) is utilized. 

Nonuniformity characterizes the magnitude of deviation between the number density distribution of 

solid particles (or microorganisms) and the uniform distribution of these particles (or 

microorganisms). If the distribution of microorganisms or solid particles is uniform (such as in a well-

mixed suspension), the nonuniformity of that distribution is identically equal to zero. Nonuniformities 

of number density distributions of microorganisms and solid particles of type i are defined as follows, 

respectively: 
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Effective diffusivity represents the magnitude of diffusivity required to achieve the same 

nonuniformity if bioconvection was not involved. The nonuniformity is used to calculate the effective 

diffusivity as follows. Both cases of mixing with and without bioconvection are considered. For the 

case with bioconvection the real diffusivity of solid particles is used. For the case without 

bioconvection the effective diffusivity is found. Effective diffusivity is found by matching 

nonuniformities between these two cases at steady-state and solving for the diffusivity for the case 

without bioconvection. 

There are two physical effects that can prevent solid particles from concentrating at the bottom of the 

chamber: bioconvection and diffusion. Without bioconvection, solid particles settle until an 

exponential distribution across the chamber’s depth is attained with the largest number density at the 

bottom of the chamber. 

The particles number density distribution can be obtained by integrating equation (6.11) for the case 

when , as: 0/ *** =∂∂= tn pV
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Using Eq. (6.19b), nonuniformity of the number density distribution of solid particles of type i for the 

case without bioconvection, ( )*'
ipnΔ , can be calculated. To define effective diffusivity the 

nonuniformities of solid particles distributions are considered at steady-state. The nonuniformity of 
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solid particles for the case without bioconvection, ( )*'
ipnΔ , can be set equal to the nonuniformity of 

solid particles for the case with bioconvection, ( )*
ipnΔ , by increasing the diffusivity of solid particles 

for the case without bioconvection. The value of diffusivity that matches the two nonuniformities is 

called the effective diffusivity, . This is a dimensionless parameter that characterizes the effect of 

bioconvection on making the number density distribution of solid particles in the chamber more 

uniform. 

( )'*
pD

6.2.5 Numerical Procedure 
 
A conservative finite-difference scheme is utilized to discretize the governing equations. An implicit 

scheme with Euler backward differencing in time and central differencing in space is utilized to 

obtain the transient solutions. A line-by-line tridiagonal matrix algorithm and iteration technique with 

over relaxation is used to solve the nonlinear discretized equations. A staggered uniform grid is 

utilized in which the stream function and vorticity are stored in one nodal set while the number 

densities of microorganisms and solid particles are stored in another nodal set. The grid is chosen 

such that the number density nodes lie in the interior of the computational domain, while the stream 

function and vorticity nodes lie in the interior and at the boundary of the domain. Computations are 

performed at the North Carolina State University IBM p690 super computer. The CPU time required 

to investigate the plume development until it attains its steady-state for a  uniform mesh is 

about 20 hours.  

3636×

 

6.3 RESULTS AND DISCUSSIONS 
 
Values of physical properties, geometrical parameters, and dimensionless parameters utilized in 

computations are summarized in Table 6-1. Physical properties and values of dimensionless 

parameters of particles of types 1 through 6 are given in Table 6-2. In order to account for additional 
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random motions of particles resulting from particle-microorganism interaction particle diffusivity 

magnitudes are taken to be larger than those found from Einstein’s relation in which the diffusivity of 

small particles due to Brownian motion is determined. 

Table 6-1. Physical properties, geometrical parameters, and values of dimensionless parameters utilized 
in computations 

 

Average number density of 
microorganisms 

mn  1012 cells/m3

Density of water 0ρ  310 3mkg  
Specific gravity of 
microorganisms 

0ρρmΔ  0.05 

Volume of a micro-organism mθ  16105 −×  m3

Average swimming velocity of 
microorganisms 

mW  410−  m/s 

Diffusivity of microorganisms mD  8105 −×  m2/s 
Gyrotaxis orientation parameter B 5  s 
Kinematic viscosity of the 
suspension 

ν 610−  m2/s 

Height of the computational 
domain 

H 0.005 m 

Width of the computational 
domain 

L 0.005 m 

Dimensionless average 
swimming velocity of 
microorganisms m

mm D
LWW =*  

000.10  

Schmidt number 

m
c D

S ν
=  

20  

Gyrotaxis number 
2L

BD
G m=  

210 −  

Rayleigh number for 
microorganisms 

m

mmm
m D

gLn
R

νρ
ρθ

0

3Δ
=  

612.5 

Aspect ratio 
L
H

=λ  
1 

 
Table 6-2. Physical properties and values of dimensionless parameters of particles utilized in 

computations 

 
 Type 1 Type 2 Type 3 
Average number density of solid 
particles ( )

ipn  
1011 cells/m3 1011 cells/m3 1011 cells/m3
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Specific gravity ( ) 0ρρ
ipΔ  0.10 0.25 0.30 

Volume of a particle ( )
ipθ  16105 −×  m3 16105 −×  m3 16105 −×  m3

Settling velocity of particles ( )
ipW  5105379.0 −× m/s 51034475.1 −× m/s 5106137.1 −× m/s 

Diffusivity of particles ( )
ipD  8105 −×  m2/s 8105 −×  m2/s 8105 −×  m2/s 

Dimensionless settling velocity of 

particles ( ) ( )
m

ipip D
LWW =*  

0.5279 1.34475 1.6137 

Rayleigh number for particles 

( ) ( ) ( )
m

ipipm

ip D

gLn
R

νρ

ρθ

0

3Δ
=  

1225.0 3062.5 3675 

Dimensionless diffusivity of 

particles ( ) ( )
m

ip

ip D

D
D =*  

0.1 0.1 0.1 

Dimensionless average 
concentration of particles 

( ) ( )
m

ip

ip n

n
n =*  

0.1 0.1 0.1 

 
TABLE 6-2 (continued) 

 
 Type 4 Type 5 Type 6 
Average number density of solid 
particles ( )

ipn  
1011 cells/m3 1011 cells/m3 1011 cells/m3

Specific gravity ( ) 0ρρ
ipΔ  0.35 0.40 0.45 

Volume of a particle ( )
ipθ  16105 −×  m3 16105 −×  m3 16105 −×  m3

Settling velocity of particles ( )
ipW  5108478.1 −× m/s 5101516.2 −× m/s 51042055.2 −× m/s 

Diffusivity of particles ( )
ipD  8105 −×  m2/s 8105 −×  m2/s 8105 −×  m2/s 

Dimensionless settling velocity of 

particles ( ) ( )
m

ipip D
LWW =*  

1.8478 2.1516 2.42055 

Rayleigh number for particles 

( ) ( ) ( )
m

ipipm

ip D

gLn
R

νρ

ρθ

0

3Δ
=  

4278.5 4900 5512.5 

Dimensionless diffusivity of 

particles ( ) ( )
m

ip

ip D

D
D =*  

0.1 0.1 0.1 

Dimensionless average 
concentration of particles 

( ) ( )
m

ip

ip n

n
n =*  

0.1 0.1 0.1 
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Nonuniformities of two number density distributions may be equal in value while the two 

distributions are not identical. Figure 6-2 shows the difference between two number density 

distributions with the same nonuniformity. This is a bidispersed case with particles of types 1 and 4. 

Figure 6-2(a) shows the number density distribution of solid particles of type 4 at steady-state 

obtained by using real diffusivity in the case with bioconvection. Figure 6-2(b) shows the number 

density distribution of solid particles of type 4 at steady-state obtained by using effective diffusivity 

in the case without bioconvection. Noting that identical nonuniformities only show identical average 

deviations from the uniform distribution, it is plain to see from Fig. 6-2 that two entirely different 

distributions exist for the same nonuniformity. 
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(a)      (b) 

Figure 6-2. Steady state distributions of the dimensionless number density of particles of type 4 in a 
bidispersed suspension of particles of types 1 & 4 (a) the case with bioconvection, computations are based 

on real diffusivity of solid particles, (b) the case without bioconvection, computations are based on 
effective diffusivity of solid particles 

 
A monodispersed suspension of small particles in the fluid that contains motile gyrotactic 

microorganisms is considered first. Figures 6-3(a)-(f) show the nonuniformities of number density 

distributions of solid particles of types 1 through 6, ( )*
ipnΔ , versus the dimensionless time, . Both 

cases with and without bioconvection are considered. The nonuniformities of number density 

distributions are zero at . The nonuniformities develop very quickly (for example, in Fig 6-3(a), 

*t

0* =t
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this occurs between  and ). This is because during this short time period 

bioconvection does not even have a chance to develop while the solid particles are settling. After 

bioconvection has developed, it helps to mix particles in the suspension. This decreases the 

nonuniformities of solid particles and makes the number density distributions of particles more 

uniform. This trend is easy to see for light particles, as shown in Figs. 6-3(a) and 6-3(b). However, in 

Figs. 6-3(c) and 6-3(d) this phenomenon is not observed. This is because bioconvection is not 

effective in mixing suspensions of heavy particles. 
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Figure 6-3. Nonuniformities of number density distributions of solid particles in a monodispersed 
suspension with and without bioconvection (effective diffusivities are utilized for the cases without 

bioconvection) (a) particles of type 1, (b) particles of type 2, (c) particles of type 3, (d) particles of type 4, 
(e) particles of type 5, (f) particles of type 6 

 

Figure 6-4 shows the difference in the effect of bioconvection on mixing suspensions of light and 

heavy particles. In Fig. 6-4(a), the number density distribution of particles of type 1 is presented at 

(a1)  (the uniform distribution), (a2)  (the nonuniformity takes on its maximum 

value), and (a3)  (the steady state). In Figs. 6-4(b) the number density distributions of particles 

of type 6 are presented at (b1)  (the uniform distribution), (b2) , and (b3)  (the 

steady state). The nonuniformity does not have a maximum in Fig. 6-3(f) as it does in Fig. 6-3(a) 

because the particles are too heavy for bioconvection to have any effect on them. In Fig. 6-4(a2), 

most particles are concentrated at the bottom of the chamber because bioconvection is not developed 

yet. After bioconvection is developed, as in Fig. 6-4(a3), the distribution of the particles becomes 

more uniform. This phenomenon cannot be found in Figs. 6-4(b2) and 6-4(b3), which means that 

bioconvection is less effective in mixing suspensions of heavy particles than it is in mixing 

suspensions of light particles. 

0=t * *

*

* * *

275.0=t

5=t

0=t 5.0=t 5=t
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Figure 6-4. Number density distributions of particles of types 1 and 6 in monodispersed suspensions (a1) 
particles of type 1 at , (a2) particles of type 1 at , (a3) particles of type 1 at , 

(b1) particles of type 6 at , (b2) particles of type 6 at , (b3) particles of type 6 at  
0* =t 275.0* =t 0.5* =t
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The solved values of effective diffusivities for solid particles of types 1 through 6 shown in Figures 6-

3(a)-(f) are summarized in Table 6-3. Figure 6-5 is based on these effective diffusivities. This figure 

displays the effect of the particles density on effective diffusivity in a monodispersed suspension of 

solid particles. All effective diffusivities are larger than the real diffusivities. This means that 

bioconvection helps in making number density distributions of solid particles more uniform. Figure 6-
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5 shows that effective diffusivities decrease when the density of solid particles increases. This is 

because bioconvection has less effect on heavier particles. Heavy particles settle down much faster 

than the light ones so that bioconvection can barely change anything. For example, effective 

diffusivity of particles of type 1 is more than 6 times larger than the real diffusivity while effective 

diffusivity of particles of type 6 is only 20% larger than the real diffusivity. 

Table 6-3. Effective diffusivities of solid particles of types 1 through 6 for monodispersed cases 

(a summary of data presented in Figure 6-3) 
 Effective Diffusivity of Particles 
Particles of type 1 in Figure 6-2(a) ( )'

1
*
pD  810656.3 −×  

Particles of type 2 in Figure 6-2(b) ( )'
2

*
pD  81095675.1 −×  

Particles of type 3 in Figure 6-2(c) ( )'
3

*
pD  

81033.1 −×  

Particles of type 4 in Figure 6-2(d) ( )'
4

*
pD  91025.9 −×  

Particles of type 5 in Figure 6-2(e) ( )'
5

*
pD  

9101803.7 −×  

Particles of type 6 in Figure 6-2(f)  ( )'
6

*
pD 910077.6 −×  
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Figure 6-5. Effect of particle density on effective diffusivity of solid particles in monodispersed and 
bidispersed suspensions. In a bidispersed case, particles of type 4 are always presented in the suspension 
while the other particle type is changing from 1 to 6. This figure shows effective diffusivities of the second 
particle type (1 through 6), while effective diffusivity of particles of type 4 in a bidispersed suspension is 

shown in Fig. 6-7 
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This chapter also investigates how the number density distribution of particles of one type may 

influence the number density distribution of particles of another type. Six different cases are 

considered. Particles of type 4 are in all six of them. The other type of solid particles in a bidispersed 

suspension is changed from type 1 through 6, respectively. Figures 6-6(a)-(f) show the 

nonuniformities of number density distributions of solid particles of type from 1 through 6, ( )*
ipnΔ , 

and type 4, ( )*
4pnΔ , versus the dimensionless time, . The same maxima which were found in 

monodispersed cases are also found in bidispersed cases when the density of solid particles is small.  
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Figure 6-6. Nonuniformities of number density distributions of solid particles in a bidispersed suspension 
with and without bioconvection (effective diffusivities are utilized for the cases without bioconvection) (a) 

particles of type 1 & 4, (b) particles of type 2 & 4, (c) particles of type 3 & 4, (d) particles of type 4 & 4, 
(e) particles of type 5 & 4, (f) particles of type 6 & 4 

 
 
The values of effective diffusivities of solid particles of type 1 through 6 in Figures 6-6(a)-(f) are 

summarized in Table 6-4 and are shown in Figure 6-5. All effective diffusivities decrease with an 

increase in the density of solid particles. An interesting observation is that all values of effective 

diffusivities from bidispersed cases are smaller than those from monodispersed cases. This means that 

the number density of particles is more nonuniform if another type of solid particles is present in the 

suspension. Furthermore, the difference of effective diffusivities between monodispersed and 

bidispersed cases is decreased when the density of particles is increased. This shows that the 

introduction of the second particle type has a greater effect on the diffusivities of lighter solid 

particles than of heavier solid particles. 
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Table 6-4. Effective diffusivities of solid particles of types 1 through 6 for bidispersed cases 

(a summary of data presented in Figure 6-6) 
 

 Effective Diffusivity of Particles  
Particles of type 1 in Figure 6-4(a) ( )'

1
*
pD  8104454.2 −×  

Particles of type 2 in Figure 6-4(b) ( )'
2

*
pD  81017576.1 −×  

Particles of type 3 in Figure 6-4(c) ( )'
3

*
pD  

91014444.9 −×  

Particles of type 4 in Figure 6-4(d) ( )'
4

*
pD  910458.7 −×  

Particles of type 5 in Figure 6-4(e) ( )'
5

*
pD  

910466.6 −×  

Particles of type 6 in Figure 6-4(f)  ( )'
6

*
pD 910874.5 −×  

 

The most interesting penomenon is found after collecting values of the effective diffusivities of solid 

particles of type 4 in Figures 6-6(a)-(f) in Table 5, and showning them in Figure 6-7. Figure 6-7 

displays the effective diffusivity of particles of type 4 as a function of the density of the second 

particle type in a bidispersed suspension. To compare the values of effective diffusivity between 

mono and bidispersed cases, the effective diffusivity of particles of type 4 in a monodispersed 

suspension is also presented in Fig. 6-7. For all computed cases, values of effective diffusity of 

particles of type 4 in a bidispersed suspension are less than that in a monodispersed suspension 

(  according to Table 3). This means that introducing a second particle type into the 

suspension makes the distribution more nonuniform. The effective diffusity of particles of type 4 

decreases initially and then increases as the density of the other particle type is increased. This shows 

that a minimum effective diffusivity of particles of type 4 exists. Figure 6-7 also shows that effective 

diffusivity of particles of type 4 in a monodispersed suspension is always larger than that in a 

bidispersed suspension. 

91025.9 −×
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Table 6-5. Effective diffusivities of solid particles of type 4 for bidispersed cases 

 (a summary of data presented in Figure 6-6) 
 

 Effective Diffusivity of Particles  

Particles of type 4 in Figure 6-4(a) ( )'
4

*
pD  910750.8 −×  

Particles of type 4 in Figure 6-4(b) ( )'
4

*
pD  910558.7 −×  

Particles of type 4 in Figure 6-4(c) ( )'
4

*
pD  910438.7 −×  

Particles of type 4 in Figure 6-4(d) ( )'
4

*
pD  910458.7 −×  

Particles of type 4 in Figure 4(e)  ( )'
4

*
pD 910568.7 −×  

Particles of type 4 in Figure 4(f)  ( )'
4

*
pD 910736.7 −×  
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Figure 6-7. Values of effective diffusivities for solid particles of type 4 in a bidispersed suspension. (The 
other particle type in the bidispersed suspension is changing from 1 through 6. Their effective 

diffusivities are shown in Figure 5.) 

 

6.4 CONCLUSIONS 
 
A new parameter, called the effective diffusivity of solid particles, is defined in this chapter. This 

parameter is utilized for the analysis of monodispersed and bidispersed suspensions. Since the 
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effective diffusivity is found to be always greater than real diffusivity, bioconvection helps mixing 

between solid particles. In a monodispersed suspension, increasing the density of particles increases 

the nonuniformity of the number density distribution of particles, which means that bioconvection is 

less effective in mixing suspensions of heavy particles than it is in mixing suspensions of light 

particles. In a bidispersed suspension, the introduction of a second particle type decreases the effect of 

mixing by the bioconvective flow thus making the particle distribution more nonuniform. 
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PART THREE  

DYNAMICS OF LARGE SOLID PARTICLES IN 

BIOCONVECTION FLOW CAUSED BY MOTILE 

GYROTACTIC MICROORGANISMS 
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7. DIRECT NUMERICAL SIMULATION OF SETTLING OF A 

LARGE SOLID PARTICLE DURING BIOCONVECTION 

ABSTRACT 
 
Settling of a large solid particle in bioconvection flow caused by gyrotactic microorganisms is 

investigated. The particle is released from the top of the bioconvection chamber; its settling pattern 

depends on whether it is released in the center of the bioconvection plume or at its periphery. The 

Chimera method is utilized; a subgrid is generated around a moving particle. The method suggested 

by Liu and Wang [1] is further developed to account for the presence of a moving boundary in the 

streamfunction-vorticity formulation using the finite-difference method. A number of cases for 

different release positions of the particle are computed. It is demonstrated that bioconvection can 

either accelerate or decelerate settling of the particle depending on the initial position of the particle 

relative to the plume center. It is also shown that the particle impacts bioconvection plume by 

changing its shape and location in the chamber. 
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NOMENCLATURE 

a  radius of a microorganism, m 

B  time scale for the reorientation of microorganisms by the gravitational torque against 

viscous torque, ( )mgha /4 3πμ , s 

mD   diffusivity of microorganisms, m2/s 

g   gravity vector, 9.81 m/s2

G  gyrotaxis number,  2/ LBDm

h displacement of the center of mass of a gyrotactic microorganism from its center of 

buoyancy, m 

H  height of the chamber, m 

*
mJ   dimensionless flux of microorganisms, defined in equation (7.14) 

L  width of the chamber, m 

mn   number density of microorganisms, 1/m3

mn   average number density of microorganisms, 1/m3

*
mn   dimensionless number density of microorganisms, mm nn /  

p̂   unit vector indicating the direction of swimming of gyrotactic microorganisms 

ep   excess pressure (above hydrostatic), Pa 

mR   bioconvection Rayleigh number, ( )mmmm DgLn νρρθ 0
3 /Δ  

cS   Schmidt number,  mD/ν

t  time, s 

*t   dimensionless time,  2/ LtDm

V  velocity vector, m/s 

*V   dimensionless velocity vector,  mDL /V
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xV   horizontal velocity component, m/s 

yV   vertical velocity component, m/s 

θV   radial velocity component, m/s 

τV   tangential velocity component, m/s 

mW   average swimming velocity of microorganisms (assumed to be constant), m/s 

*
mW   dimensionless average swimming velocity of microorganisms,  mm DLW /

x  horizontal coordinate, m 

*x   dimensionless horizontal coordinate,  Lx /

x̂   unit vector in the x-direction 

y  vertical coordinate, m 

*y   dimensionless vertical coordinate, Ly /  

ŷ   unit vector in the y-direction 

 

Greek symbols 
mΔρ   density difference between microorganisms and water, 0ρ−mρ , kg/m3

ζ   horizontal component of vorticity, 1/s 

*ζ   dimensionless horizontal component of vorticity,  mDL /2ζ

mθ   volume of a microorganism, m3

λ   aspect ratio of the chamber,  LH /

μ   dynamic viscosity, assumed to be approximately the same as that of water, kg/(m s) 

ν   kinematics viscosity, assumed to be approximately the same as that of water, m2/s 

0ρ   density of water, kg/m3

mρ   density of microorganisms, kg/m3
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pρ   density of the particle, kg/m3

ψ   streamfunction, m2/s 

*ψ   dimensionless streamfunction, mD/ψ  

ω   angular velocity, 1/s 

∗ω   dimensionless angular velocity,  ωmDL /2
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7.1 INTRODUCTION 
 
Bioconvection provides a powerful tool to manipulate mass transfer in microvolumes of fluids. This 

may have potential pharmaceutical and bio-technological applications. This chapter investigates a 

possible application of bioconvection to control settling of a large solid particle, which may be useful 

to control sedimentation in microvolumes.  

Motile microorganisms swim in a particular direction because of different stimuli such as phototaxis, 

chemotaxis, or gyrotaxis. This chapter considers gyrotatic microorganisms, such as many species of 

algae. Because these microorganisms are bottom heavy, their swimming direction is determined by 

the balance of gravitational and viscous torques. Gyrotactic behavior results in the accumulation of 

these microorganisms in the regions of most rapid downflow. Since the algae are typically 3-5% more 

dense than water, the density in the regions of downflow becomes larger than in the regions of 

upflow. Buoyancy increases velocities in both upflow and downflow regions, enhancing velocity 

fluctuations and introducing a hydrodynamic instability (Pedley et al. [2], Ghorai and Hill [3, 4]). The 

induced convection fluid motion leads to the development of bioconvection plumes. Many 

experimental papers (Kessler [5, 6], Kessler et al. [7, 8]) have described the formation of gyrotactic 

plumes with regular patterns in algal suspensions.  

Geng and Kuznetsov [9, 10] investigated the settling of small solid particles in a suspension of motile 

gyrotactic microorganisms. It was found that mixing induced by bioconvection slows down settling of 

such particles which leads to a more uniform number density distribution of solid particles along the 

height of the chamber. In these studies, the particles were small and their number was large so that 

they were modeled as a continuous phase having its own number density distribution.  

A large number of research papers addressed moving objects in a fluid. Hu et al. [11] used the finite 

element method for the computation of settling a solid object in a liquid. In this study, the motion of 

the solid object was tracked by an Arbitrary Lagrangian-Eulerian (ALE) scheme. Gan et al. [12] 
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presented a direct numerical simulation of sedimentation of large solid particles in a flow field 

induced by natural convection. The cases of one and two large settling particles were investigated. 

Hsiao and Chahine [13] applied the Chimera method to simulate the bubble dynamics in a vortex 

flow. A moving Chimera grid was generated to describe the bubble surface motion. Russell and Wang 

[14] developed a Cartesian grid method for modeling multiple moving objects in a 2-D 

incompressible viscous flow. An underlying regular Cartesian grid was used to resolve the moving 

boundary problem. Boundary conditions for the moving boundary were satisfied by superposing a 

homogenous solution of Poisson’s equation upon the initial solution for the streamfunction. The 

initial solution was generated by neglecting the moving object in the fluid flow. 

The utilization of the streamfunction-vorticity formulation is an effective method for numerical 

modeling of a 2-D incompressible flow. However, its utilization to calculate the values of the 

streamfunction and vorticity in a domain that contains moving boundaries still provides a challenge. 

Liu and Wang [1] introduced a high order finite-difference method in multi-connected domains. This 

method provides an algorithm for computing boundary conditions for streamfunction and vorticity in 

a fixed multi-connected domain. In this research, the method developed in Liu and Wang [1] is 

extended to allow for moving boundaries in the domain filled with an incompressible fluid.  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 7-1. Schematic diagram of a large particle settling in developed bioconvection flow 
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This chapter considers a large particle (in a 2-D model utilized in this research it is represented by an 

infinitely long cylinder, see Fig. 1a) settling in a chamber in which the bioconvection plume is 

already fully developed. A finite-difference method based on the moving Chimera grid scheme is 

utilized. The vorticity and streamfunction are introduced into the Navier-Stokes equations to 

eliminate the pressure.  

It is assumed that bioconvection plumes occur periodically. The two-dimensional computational 

domain coincides either with one or two the periodic cells (each periodic cell contains a single 

bioconvection plume). The height of the periodic cell is H and its width is L, where L is a typical 

plume spacing and λ =  is the aspect ratio of the periodic cell. Ghorai and Hill [4] studied the 

effect of the aspect ratio on bioconvection and found that the steady-state bioconvection plume was 

stable for 

LH /

1=λ . Increasing λ  slowed down the solution’s convergence to steady-state. This chapter 

assumes that 1=λ . 

7.2 GOVERNING EQUATIONS 

7.2.1 Dimensional Governing Equations 

Governing equations for a bioconvection plume caused by gyrotactic microorganisms are given in 

Ghorai and Hill [3, 4] as: 

Momentum equation 

( ) gVVVV
0 mmme np

t
ρθμρ Δ+Δ+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂      (7.1) 

Continuity equation 

0=⋅∇ V           (7.2) 
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Conservation of motile microorganisms 

( ) ( mmmmm
m nDWnn
t

n
∇−+−=

∂
∂

pV ˆdiv )        (7.3) 

where  is the diffusivity of microorganisms (this assumes that all random motions of 

microorganisms can be approximated by a diffusive process);  is the number density of motile 

microorganisms;  is the excess pressure (above hydrostatic);  is the unit vector indicating the 

direction of microorganisms’ swimming (equations for this vector are obtained in Pedley et al. [2]); V 

is the velocity vector, ( , );  is the vector of microorganisms’ average swimming velocity 

(  is assumed to be constant); 

mD

mn

ep p̂

xV yV p̂mW

mW mρΔ  is the density difference between microorganisms and water, 

0ρρ −m ; mθ  is the volume of a microorganism; μ  is the dynamic viscosity of the suspension; and 

0ρ  is the density of water. 

The motion of the solid particle is described by Newton’s second law: 

 x
x F

dt
dV

m = , y
y F

dt
dV

m = , TI =
dt
dω  

and 

xV
dt
dx

= , yV
dt
dy

= , ωθ
=

dt
d         (7.4) 

where ⎟
⎠
⎞⎜

⎝
⎛= 4

2dm p
πρ  is the mass of the particle, ⎟

⎠
⎞⎜

⎝
⎛= 8

2dmI  is the polar moment of inertia of the 

particle, d is the diameter of the particle, ω  is the particle’s angular velocity,  is the x-component 

of the total external force on the particle,  is the y-component of the total external force on the 

particle, and T is the mechanical torque on the particle. 

xF

yF
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The force terms are due to gravity and the viscous force that the fluid exerts on the surface of the 

particle. Since the particle is symmetric, the viscous friction on the surface of the particle is the only 

contributor to the torque: 

 ∫
Ω
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= dsd
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V
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where  is the surface of the particle and  is the tangential fluid velocity along the surface of the 

particle. 

Ω τV

7.2.2 Dimensionless Governing Equations 

Utilizing the streamfunction-vorticity formulation, the governing equations can be recast in the 

following dimensionless form: 

∗∗ −∇= ψζ 2           (7.6) 
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The dimensionless variables in equations (7.6)-(7.8) are defined as: 
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where asterisks denote dimensionless quantities. 

Ghorai and Hill [3, 4] have shown that if the inertia terms in the momentum equation are neglected 

(which is justified for bioconvection flows because of a very low Reynolds number), the vector p , 

which determines the swimming direction of microorganisms, can be computed as:  
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where . The parameter B is called the “gyrotactic orientation parameter” by Pedley 

and Kessler [15], who defined it as: 

∗== ζζκ GB

mgh
aB

34πμ
=           (7.11) 

where h is the displacement of the center of mass of a gyrotactic microorganism from its center of 

buoyancy, m is the mass of the microorganism, and a is the radius of a microorganism. 

7.2.3 Chimera Grid Scheme 

The Chimera grid scheme is a grid embedding technique that is utilized in both 2-D and 3-D 

computations (see, for example Hsiao and Chahine [13]). The Chimera scheme provides a simple 
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method for domain decomposition. A structured subgrid is generated around the moving particle 

settling in bioconvection flow field. In this chapter, a subgrid is created around the particle and a 

global rectangular grid is created for the global flow field, as demonstrated in Figs. 7.2a and 7.2a. 

Equations (7.6)-(7.8) are solved separately for the global grid and the subgrid. The communication 

between the global grid and the subgrid is implemented by interpolation. The unknown values of 

variables in the subgrid boundary points are computed by interpolating these boundary points onto the 

global grid with the known values on the global grid. Therefore, the computational problem for the 

subgrid becomes a boundary value problem. In the global grid, the same procedure is required; the 

only difference is that an artificial inner boundary is created around the moving particle. The problem 

for the global grid becomes a boundary value problem by interpolating these artificial inner boundary 

points onto the subgrid with known values on the subgrid. Equations (7.6)-(7.8) are transformed into 

a polar coordinate system for the subgrid computations. 
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(a)      (b) 

Figure 7-2. Chimera grid system: (a) global and subgrid mesh, (b) subgrid mesh 

 
7.2.4 Initial and Boundary Conditions 

Equations (7.6)-(7.8) are solved subject to the following boundary conditions. The side walls of the 

computational domain are assumed shear-free in order to model plumes’ periodic condition. The free 
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surface is assumed stress-free, and the bottom wall is assumed rigid (a hydrodynamic no-slip 

condition is imposed there). At the surface of the settling particle, the no-slip boundary condition 

along with the no-penetration condition for the microorganisms is assumed. Under these assumptions, 

the boundary conditions at the walls of the computational domain are presented as: 

0* =ψ  at  ,0* =y λ  and        (7.12a) ,5.0* ±=x

0=
∂
∂

∗

∗

y
ψ  at          (7.12b) ,0* =y
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2
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∗

y
ψ at , and λ=*y 02

2

=
∂
∂

∗

∗

x
ψ  at      (7.12c) .5.0* ±=x

Normal fluxes of microorganisms are zero through all boundaries of the computational domain and 

the surface of the moving particle: 

0ˆ =⋅ yJ*
m  at  ,0* =y λ ;  at ;      (7.13a) 0ˆ =⋅ xJ*

m 5.0* ±=x

0ˆ =⋅ rJ*
m  at surface of the moving particle      (7.13b) 

where  , , and  are the unit vectors in the x-, y-, and r-directions, respectively, and x̂ ŷ r̂

( ) ***
m ˆ mmm nWn ∇−+= ∗∗ pVJ         (7.14) 

is the dimensionless flux of microorganisms. 

To calculate the values of the streamfunction and vorticity on the moving boundary, they are defined 

in the polar coordinate system: 
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where ∗r  is the dimensionless radial coordinate, , (see Fig. 2b) and  and  are the 

dimensionless velocity components in the polar coordinate system. 
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Representing ( )θψ ,∗∗ r  through Taylor series expansion near the moving boundary and assuming that 

∗Δr  is constant (to simplify equations, the subgrid is constructed such that the two first grid layers 

around the particle are of uniform thickness; after that the grid becomes non-uniform) the following 

equations are obtained: 
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where  and  is the radius of the particle. Lrr /00 =∗
0r
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Liu and Wang [1] have developed a method to calculate the boundary values of the streamfunction on 

a fixed boundary of a multi-connected domain. In the case of a fixed boundary, the streamfunction is 

constant along a surface that represents a closed contour in a 2-D space while in the moving boundary 

case the streamfunction is a function of location (x, y) on the surface and time t. In Liu and Wang [1], 

the momentum equation is multiplied by a unit tangential vector  to obtain the boundary condition 

for the streamfunction. The same idea is utilized in this study for the moving boundary problem. 

τ

Multiplying Eq. (7.1) by a unit tangential vector τ  along the moving boundary of the particle, the 

following is obtained: 
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Transforming Eq. (7.20) to the dimensionless form, noticing that 
n

τV
∂
∂

=⋅Δ
ζ- , and ignoring the 

pressure difference along the boundary of the particle (because both bioconvection and settling 

velocities are small), the following is obtained: 
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Discretizing Eq. (7.a) at the surface of the particle: 
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Substituting Eq. (7.19) into Eq. (22) and solving for ( )θψ ,*
0r

∗ : 
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Equations (7.19) and (7.23) provide necessary boundary conditions for the streamfunction and 

vorticity on the surface of the moving particle.  
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(c) 
Figure 7-3. Steady-state bioconvection plume: (a) Dimensionless number density of microorganisms, (b) 

Contour lines of the dimensionless vorticity, (c) Contour lines of the dimensionless streamfunction 
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Initially, at , the bioconvection plume is fully developed (see Fig. 7.3). The particle is released 

with zero initial velocity at some distance beneath the free surface to keep all subgrid nodes inside the 

computational domain. 

0* =t

7.2.5 Numerical Procedure 

A conservative finite-difference scheme is utilized to discretize the governing equations in both 

Cartesian and polar coordinate systems. An implicit scheme with Euler backward differencing in time 

and central differencing in space is utilized. A line-by-line tri-diagonal matrix algorithm and iteration 

technique with over-relaxation for the number density of microorganisms on the global grid and 

under-relaxation for other variables for both global and subgrid nodal points is used to solve the 

nonlinear discretized equations. A staggered mesh is utilized in which the streamfunction and 

vorticity are stored in one nodal set while the number density of microorganisms is stored in another 

nodal set. The mesh is chosen such that the number density nodes lie in the interior of the 

computational domain while the streamfunction and vorticity nodes lie in the interior and at the 

boundary of the domain. Computations are performed on a single 3.0 GHz Intel Xeon processor on 

the North Carolina State University IBM p690 supercomputer. The typical CPU time required for 

computing particle settling from just beneath the free surface to near the bottom of the computational 

domain (on a  uniform global mesh and a 3636 × 3615×  non-uniform polar mesh) is approximately 

50 hours. Numerical stability requires the dimensionless time step of ; the average number of 

iterations per timestep is 100 (in the beginning of settling the number of iterations is large and it 

decreases at the settling process goes on). The convergence criterion is that the maximum relative 

variation of the dimensionless vorticity, streamfunction, and number density of microorganisms in 

every nodal point between two iterations does not exceed . 

7102 −×

710−
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7. 3. RESULTS AND DISCUSSION 

Values of the physical properties, geometrical parameters, and dimensionless parameters utilized in 

computations are summarized in Table 7.1. One of the aims of computations is to investigate the 

effect of the settling particle on the bioconvection plume. Five cases (A-E) with different particle 

release positions, different particle densities, and different number of periodic cells (one or two) in the 

computational domain are investigated. Parameter values for these five cases are summarized in 

Table 7.2. To ensure that all subgrid point are located within the global mesh, the particle is released 

at some distance beneath the free surface (the vertical position of the free surface is , the 

center of the particle is initially located at , the subgrid extends to ).  

0.1* =y

8.0* =y 1674.0=∗r

Table 7-1. Physical properties, geometrical parameters, and values of dimensionless parameters utilized 
in computations 

Average number density of 
microorganisms 

mn  1012 cells/m3

Density of water 0ρ  310 3mkg  

Density of microorganisms mρ  3101.05×
3mkg  

Volume of a microorganism mθ  16105 −×  m3

Average swimming velocity of 
microorganisms 

mW  410−  m/s 

Diffusivity of microorganisms mD  8105 −×  m2/s 

Gyrotaxis orientation parameter B 5  s 

Kinematic viscosity of the 
suspension 

ν 610−  m2/s 

Height of the periodic cell H 0.005 m 

Width of the periodic cell L 0.005 m 

Dimensionless average 
swimming velocity of 

microorganisms m
mm D

LWW =*  
000.10  

Schmidt number 

m
c D

S ν
=  

20  
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Gyrotaxis number 
2L

BD
G m=  

210 −  

Bioconvection Rayleigh number 

m

mmm
m D

gLn
R

νρ
ρθ

0

3Δ
=  

612.5 

Aspect ratio of the periodic cell 
L
H

=λ  
1 

Radius of the particle 
0r  5109 −×  m 

Density of the particle 
pρ  3104.1~2.1 ×

3mkg  

 

Table 7-2. Initial positions of the center of the particle for Cases A-E 

 Case A Case B Case C Case D Case E 

*x  
0.0 0.3 0.5 0.3 0.3 

*y  
0.8 0.8 0.8 0.8 0.8 

0ρ
ρ p  

1.2 1.2 1.2 1.2 1.4 

Number of 
periodic cells 

in the 
computational 

domain 

1 1 2 2 1 

 

Bioconvection is fully developed and steady-state before the particle begins to settle. Figure 7.3 

displays the steady-state bioconvection plume at t = 0. Figure 7.3a shows the dimensionless number 

density of microorganisms, Fig. 7.3b depicts contour lines of the dimensionless vorticity, and Fig. 

7.3c displays contour lines of the dimensionless streamfunction. Number density of microorganisms 

takes on its maximum value in the center of the free surface of the computational domain while 

bioconvection plume is located in the center of the domain. Fluid flow is directed downward in the 

center of the domain and upward at its periphery. 
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In Case A, the particle is released in the center of the computational domain, directly in the center of 

the falling bioconvection plume. It is assumed that the events happening within the periodic cell are 

not influenced by other plumes in the neighboring periodic cells. This assumption implies that 

neighboring periodic cells each contain a particle settling in the center of the cell (see Fig. 7.4a). 

Figure 7.5 shows the dimensionless number density of microorganisms and contour lines of the 

dimensionless vorticity and streamfunction at different moments of time (  and 

). From Fig. 7.5 it is evident that the settling particle that goes through the bioconvection 

plume extends the length of the plume. Microorganisms are transported deeper into the chamber by 

the plume; for example, comparing Figs. 7.5a and 7.3a one can see that the local maximum of the 

number density of microorganisms is displaced downward from  to approximately .  

0001.0* =t

0007.0* =t

4.0* =y 3.0* =y

 

(a) 

 
(b) 

Figure 7-4. Schematic diagram of neighboring periodic cells with a particle in each of them: (a) Particle is 
released in the center of the chamber, (b) Particle is released at one side of the chamber 
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Figure 7-5. Case A: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
dimensionless vorticity, (c) Contour lines of dimensionless streamfunction 
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Figure 7-6. Case B: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
dimensionless vorticity, (c) Contour lines of dimensionless streamfunction 

 151



www.manaraa.com

Figure 7.6 shows the dimensionless number density of microorganisms and contour lines of the 

dimensionless vorticity and streamfunction at different moments of time (  and 

) for Case B. As in Case A, it is assumed that the events happening within the periodic 

cell are not influenced by other plumes in the neighboring periodic cells. In case B, this assumption 

implies that the neighboring periodic cell contains a particle whose initial position is symmetric with 

respect to the vertical boundary of the periodic cell (see Fig. 7.4b). The bioconvection plume is 

pushed away from the particle during sedimentation. This suggests that the location and the shape of 

the bioconvection plume can be manipulated by introducing a solid particle into the plume. 

0001.0* =t

0007.0* =t

To investigate how the upward bioconvection flow affects particle sedimentation, a particle is 

released between two identical bioconvection plumes (Case C). To compute this case, the width of the 

computational domain is doubled (in case C it is 2L) in order to include two periodic cells (see Fig. 

7.7). In computing this case, the symmetry of the problem is utilized in the numerical code and the 

vorticity and streamfunction fields are made antisymmetric with respect to the vertical plane 

. Due to this symmetry, the x-viscous force and the torque on the particle vanish.  5.0* =x

Figure 7.7 shows the dimensionless number density of microorganisms and contour lines of the 

dimensionless vorticity and streamfunction at different moments of time (  and 

) for Case C. In the beginning of the process, while the particle settles in the center of the 

computational domain, bioconvection plumes, which are located on both sides of the particle, keep 

their symmetry. As settling continues, the plumes are pushed away from the particle and are shifted to 

the sides of the domain; their symmetry (with respect to the centerline of the plume) is broken. 

0001.0* =t

0007.0* =t
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Figure 7-7. Case C: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
dimensionless vorticity, (c) Contour lines of dimensionless streamfunction 

 

To investigate the effect of two neighboring plumes on particle sedimentation, in Case D (as in case 

C) a computational domain that consists of two periodic cells is utilized, but, unlike Case C, the 

particle is released non-symmetrically. The dimensionless distance between the particle release 

position and the center of the left bioconvection plume is 0.3 and the distance between that and the 

center of the right plume is 0.7. Figure 7.8 shows the dimensionless number density of 
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microorganisms and contour lines of the dimensionless vorticity and streamfunction at different 

moments of time (  and ) for Case D. The settling particle pushes both 

bioconvection plumes away as it settles. The left bioconvection plume is pushed farther away than the 

right one meaning that the particle has more effect on the plume which is closest to it. 
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Figure 7-8. Case D: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
dimensionless vorticity, (c) Contour lines of dimensionless streamfunction 
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Figure 7.9a displays the dimensionless x-velocity of the particle, , Figure 7.9b displays the 

dimensionless y-velocity of the particle, , and Figure 7.9c displays the dimensionless angular 

velocity of the particle, , for Cases A-C. Figure 7.9a shows that the particle in Case B has the 

largest x-velocity because the particle is involved in the bioconvection flow, which in Case B at the 

particle release position has the largest horizontal velocity of the three cases. In Case B the particle is 

released close to the vertical boundary of the periodic cell. Physically, the largest horizontal 

displacement of the particle results from the effect of this periodic boundary. In Case D it is shown 

that if the computational domain is enlarged to include the second periodic cell, the particle 

displacement in the horizontal direction becomes much smaller. In Cases A and C the bioconvection 

flow affecting the particle is entirely vertical (the flow is upward for Case C and downward for Case 

A). Although in Case A the initial position of the particle center is exactly in the center of the 

bioconvection plume, the particle sedimentation is not strictly vertical but shows a small (50 times 

smaller than in Case B) displacement in the horizontal direction. This displacement is caused by 

numerical inaccuracies. However, there is a different way to look at this result. As particle settles in 

the center of the bioconvection plume, a small disturbance (which is modeled by a numerical error in 

computations) can break the symmetry and make the particle shift to either side. Once the particle is 

shifted, its displacement from the center of the domain increases monotonically. This small horizontal 

velocity is not observed in Case C because, as explained above, the symmetry of the problem is 

utilized in numerical formulation in computing Case C.  

∗
xV

∗
yV

∗ω

In Fig. 7.9b, the downward velocity decreases as the particle settles. Its settling y-velocity approaches 

a constant value, which is the particle terminal velocity caused by the balance of gravitational and 

viscous forces. The viscous force is calculated using an empirical correlation provided by Sucker and 

Brauer [16] for a drag coefficient in a flow past a cylinder of unit length: 
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Figure 7-9. (a) Dimensionless velocity in the x direction, , at the surface of the particle; (b) 

dimensionless velocity in the y direction, , at the surface of the particle; (c) dimensionless angular 

velocity of the particle, , versus time for Cases A, B, and C 
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The particle terminal velocity, U, which is shown by a horizontal line in Fig. 8b, is found by equating 

gravitational and viscous forces: 

( )( )grF pD
2

00 πρρ −=          (7.25)  

Figure 7.9b shows that particle velocities at the end of the sedimentation process approach the particle 

terminal velocity (obtained using experimental correlation (24)) in all Cases A-C, which validates the 

obtained numerical results. This figure also shows that Case A has the largest ; this is because the 

particle release position in this case is in the center of the plume where the downward velocity of the 

bioconvection flow is the largest. The absolute value of the downward velocity in Case B is smaller 

than that in Case C; this happens because the upward bioconvection flow at  (particle release 

position for Case B) is stronger than that at  (particle release position for Case C). 

yV

3.0=∗x

5.0=∗x

As seen from Fig. 7.9c, the particle in Case A has a small non-zero angular velocity, which is caused 

by numerical inaccuracies (physically, because of the symmetry, the particle angular velocity in Case 

A must be zero). In Case C, the angular velocity of the particle is exactly zero because symmetry of 

the problem is explicitly utilized in computing this case by making the vorticity and streamfunction 

fields antisymmetric. In Case B, the angular velocity, , is decreasing during sedimentation (its 

absolute value is increasing). This means that the particle rotates in the counter-clockwise direction 

with an increasing speed. 

∗ω

To study the effect of particle density, a heavier particle is considered in Case E. In this case the 

particle release position and the computational domain size are identical to Case B. The paths of the 

particle centers during settling for Cases B, D, and E are displayed in Figure 9. The particle’s path for 

Case E is similar to that for Case B but has larger displacements in both horizontal and vertical 

directions by the end of sedimentation. In Case D, the particle is displaced toward the center of the 

closest plume during the first half of the sedimentation process; this is caused by the direction of the 
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bioconvection flow in the beginning of particle sedimentation. During the second part of the 

sedimentation process, the direction of the bioconvection flow changes and the particle is displaced 

away from the center of the closest plume. The effect of the bioconvection plume in a neighboring 

cell is seen from comparing particle’s paths for Cases B and D. Neglecting the bioconvection plume 

in a neighboring cell and imposing a stress-free impermeable boundary between the two cells results 

in a larger particle displacement away from this boundary in Case B. 
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Figure 7-10. The path of the particle center for Cases B, D and E 

 

7.4  CONCLUSIONS 

A numerical method based on the streamfunction-vorticity formulation for the case of a multi-

connected domain with moving boundaries is developed. This method is utilized to investigate 

settling of a large solid particle suddenly released in a chamber with a fully developed bioconvection 

flow caused by gyrotactic microorganisms. The particle settling changes the shape and location of the 

bioconvection plume. The particle settling is also affected by bioconvection. Because of 

bioconvection, the particle is pushed in both vertical and horizontal directions. Five different cases 

are computed with different particle release positions, different particle densities, and different sizes 

of the computational domain. It is found that restricting the size of the computational domain to one 
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periodic cell by imposing periodic boundary conditions at the vertical boundaries of the domain 

pushed the particle away from the periodic boundary. Numerical studies involving deeper chambers 

as well as physical experiments are needed to gain further understanding of this problem. 
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8. DYNAMICS OF LARGE SOLID PARTICLES IN 

BIOCONVECTIVE SEDIMENTATION 

 

ABSTRACT 

Settling of one or two large solid particles in a bioconvection flow induced by gyrotactic motile 

microorganisms is investigated using a 2D numerical model. The results of varying the initial 

positions of large particles on the bioconvection flow pattern are investigated. The Chimera method is 

utilized to generate subgrids around the moving particles. It is demonstrated that the introduction of a 

single large particle displaces bioconvection plume and changes its shape. The introduction of two 

particles on the same side of the bioconvection plume further displaces the plume while the 

introduction of two particles on opposite sides reduces this displacement. The influence of the 

bioconvection plume on the particles’ settling paths and particles’ settling velocities is investigated. 
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8.1 INTRODUCTION 

Bioconvection caused by gyrotactic microorganisms has been studied extensively, both 

experimentally and numerically. Bioconvection provides a method for manipulating mass transfer in 

microvolumes of fluids that has potential pharmaceutical and bio-technological applications. The 

results of this chapter bring to light the interaction between large particles and a bioconvection plume 

which may be utilized in controlling sedimentation in microvolumes.  

Gyrotactic microorganisms, such as Dunaliella, Chlamydomonas, Volvox, and Peridinium (Pedley et 

al.1), swim in a particular direction due to the balance of gravitational and viscous torques. Gyrotactic 

behavior causes these microorganisms to accumulate in the regions of most rapid downflow. Since 

these microorganisms are typically 3-5% heavier than water, the density of the suspension in the 

regions of downflow becomes larger than in the regions of upflow. Buoyancy increases velocity 

fluctuations in both upflow and downflow regions thus introducing a hydrodynamic instability 

(Pedley et al.1, Ghorai and Hill2, 3). The induced convection fluid motion causes the development of 

bioconvection plumes.  

Substantial research into sedimentation has been conducted. For large particles, sedimentation 

velocity is related to wall separation distances (Kuusela4). In Liu et al.5 particle sedimentation and 

rotation near a wall is simulated. Particle-particle interactions during sedimentation are studied in 

Joseph et al.6 Singh and Joseph7 extend the numerical research of particle sedimentation to three 

dimensions. Gan et al.8 present a direct numerical simulation of sedimentation in a flow field induced 

by natural convection. 

Preliminary research has been conducted involving the combined bioconvection-sedimentation 

problem (called here bioconvective sedimentation). Geng and Kuznetsov9,10 investigate the 

sedimentation of small solid particles in bioconvection. Sedimentation of a single large particle 

during bioconvection is studied in Geng and Kuznetsov11.  
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This chapter investigates sedimentation of one and two large particles in a bioconvection plume. The 

two-dimensional model considers two large circular particles (see Fig. 1a) settling in a chamber in 

which the bioconvection plume is fully developed. The height of the computational domain is H and 

its width is L, where L is a typical plume spacing and LH /=λ  is the aspect ratio of the chamber. 

This chapter uses 2=λ . 
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Figure 8-1. (a) Schematic diagram of two large particles settling in a bioconvection flow; (b) Chimera 

grid system, global and subgrid meshes; (c) Chimera grid system, subgrid mesh 
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The stream function-vorticity method used here is applied to a multi-connected domain that involves 

moving particles. In order to overcome the complication of imposing boundary conditions at moving 

boundaries a method similar to that used in Liu and Wang12 is incorporated. The multiple and moving 

grid systems (see Figs. 1b and 1c) are formulated using the Chimera method (Chattot and Wang13, 

Houzeaux and Codina14). 

8.2 GOVERNING EQUATIONS 

8.2.1 Dimensional Governing Equations 

Governing equations for a bioconvection plume caused by gyrotactic microorganisms are given in 

Ghorai and Hill2, 3 as: 

Momentum equation 

( ) gVVVV
mmme np

t
ρθμρ Δ+∇+−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ 2

0      (8.1) 

Continuity equation 

0=⋅∇ V           (8.2) 

Conservation of motile microorganisms 

( ) ( mmmmm
m nDWnn
t

n
∇−+−=

∂
∂

pV ˆdiv )        (8.3) 

where  is the diffusivity of microorganisms (it is assumed that all random motions of 

microorganisms can be approximated by a diffusive process); g is the gravity vector;  is the 

number density of motile microorganisms; p  is the unit vector indicating the direction of 

microorganisms’ swimming (equations for this vector are obtained in Pedley et al.

mD

mn

ˆ

1);  is the excess ep
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pressure (above hydrostatic); V is the velocity vector; t is the time; ( , );  is the vector of 

microorganisms’ average swimming velocity (  is assumed to be constant); 

xV yV p̂mW

mW mρΔ  is the density 

difference between microorganisms and water, 0ρρ −m ; mθ  is the volume of a microorganism; μ  is 

the dynamic viscosity of the suspension, assumed to be approximately the same as that of water; and 

0ρ  is the density of water. 

Appling the second Newton’s law to particles, the motion of particles can be described by equations 

(8.4a) and (8.4b): 

x
x

p F
dt

dV
m = , y

y
p F

dt
dV

m = , Tω
=

dt
dI        (8.4a) 

where ( )yx FF ,=F  is the total external force on a particle, ⎟
⎠
⎞⎜

⎝
⎛= 8

2dmI p  is the polar moment of 

inertia of a particle, ⎟
⎠
⎞⎜

⎝
⎛= 4

2dm pp
πρ  is the mass of a particle (d is the diameter of a particle), T is 

the mechanical torque on a particle, and ω  is the particle’s angular velocity vector. 

xV
dt
dx

= , yV
dt
dy

= , ω=
dt
dθ         (8.4b) 

where ω  is the particle’s angular velocity. 

In this research, the two particles are assumed to be of identical mass and size. Particle density is 

uniform so that the particle geometrical center is also its center of mass.  

The fluid exerts a viscous force on the surface of the particles. Since particles are symmetric, the 

viscous friction on the surface of a particle provides the only contribution to the torque: 

∫
Ω

⎟
⎠

⎞
⎜
⎝

⎛ ⋅
∂
∂

= dsFx x
n

V ˆτμ          (8.5a) 
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where  is the tangential fluid velocity along the surface of a particle and Ω  is the surface of a 

particle. 

τV

8.2.2 Dimensionless Governing Equations 

The governing equations can be recast into the following dimensionless form by utilizing the 

streamfunction-vorticity formulation: 

∗∗ −∇= ψζ 2           (8.6) 
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The dimensionless variables in equations (8.6)-(8.8) are defined as: 
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where G is the gyrotaxis number,  is the bioconvection Rayleigh number,  is the Schmidt 

number, 

mR cS

ν  is the kinematic viscosity of the suspension, and asterisks denote dimensionless quantities. 
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By neglecting inertia terms in Eq. (8.1) (which is justified for bioconvection flows because of a very 

low Reynolds number), Ghorai and Hill2, 3 have shown that the vector p , which determines the 

swimming direction of microorganisms, can be computed as:  
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where . The parameter B is called the “gyrotactic orientation parameter” by Pedley 

and Kessler 

∗== ζζκ GB

15; it is defined as: 

ghm
aB

m

34πμ
=           (8.11) 

where a is the radius of a microorganism, h is the displacement of the center of mass of a gyrotactic 

microorganism from its center of buoyancy, and  is the mass of a microorganism. mm

8.2.3 Initial and Boundary Conditions 

It is assumed that bioconvection plumes occur periodically. The two-dimensional computational 

domain coincides with a periodic cell that contains a single bioconvection plume. It is assumed that 

the particles do not interact with any bioconvection plumes outside the computational domain. Ghorai 

and Hill [3] studied the effect of the aspect ratio (λ = ) on bioconvection and found that the 

steady-state bioconvection plume was stable for 

LH /

2=λ . Increasing λ  slowed down the solution’s 

convergence to steady-state; oscillations were observed for 5=λ  so that the steady-state could never 

be reached. This chapter uses 2=λ . 
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The no-slip boundary condition is utilized at the bottom wall. The top and the side boundaries of the 

computational domain are assumed impermeable to the fluid and stress-free. Under these 

assumptions, the boundary conditions for the computational domain can be presented as: 

0* =ψ  at  ,0* =y λ  and        (8.12a) ,5.0* ±=x

0=
∂
∂

∗

∗

y
ψ  at          (8.12b) ,0* =y

02

2

=
∂
∂

∗

∗

y
ψ at , and λ=*y 02

2

=
∂
∂

∗

∗

x
ψ  at      (8.12c) .5.0* ±=x

Normal fluxes of microorganisms are zero through all boundaries of the computational domain and 

the surfaces of the moving particles: 

0ˆ =⋅ yJ*
m  at  ,0* =y λ ,  at       (8.13a) 0ˆ =⋅ xJ*

m 5.0* ±=x

0ˆ =⋅ rJ*
m  at surface of a moving particle      (8.13b) 

where , y , and r  are the unit vectors in the x-, y-, and r-directions, respectively, and  x̂ ˆ ˆ

( ) ***
m ˆ mmm nWn ∇−+= ∗∗ pVJ         (8.14) 

is the dimensionless flux of microorganisms. 

The streamfunction and vorticity are defined in the polar coordinate system for the subgrids created 

around the particles as follows: 

⎟⎟
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⎞
⎜⎜
⎝

⎛

∂
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+
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+
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∗
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2

2

22

2 11
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ψψψζ
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θ
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∗
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−=
r

V ψ
θ         (8.16) 

where ∗r  is a dimensionless coordinate used around the particle (see Fig. 8.1c), and  and  are 

the dimensionless velocity components in the polar coordinate system. 

∗
rV ∗

θV

At the surface of the settling particles, the no-slip boundary condition is imposed. Geng and 

Kuznetsov [11] have shown that the values of the streamfunction and vorticity on a moving boundary 

in a multi-connected domain can be calculated numerically by the following procedure. Using Taylor 

series expansion for ( )θψ ,∗∗ r  near the moving boundary, 2

2

θ
ψ

∂
∂ ∗

 on the particle surface is expressed 

as: 

( ) ( ) ( )
( )( 4
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    (8.17) 

The equation to calculate  on the particle surface is derived by substituted Eq. (8.17) into Eq. 

(8.15): 

( θζ ,0∗
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( ) ( ) ( ) ( ) ( )( )
( ) θ
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∗ rV
rr

V
r
rr

0
2

0

2

1
2

,07,2,18,026
,0  (8.18) 

where  is the radius of the particle. 0r

To calculate the boundary values of the streamfunction on a moving boundary, Eq. (8.1) is multiplied 

by a unit tangential vector  along the surface of a particle. Ignoring the pressure difference along the 

particle’s surface, the following equation for 

τ

( )θψ ,0∗  is obtained: 

 169



www.manaraa.com

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

7

,026

21
,22,184,0 0

2

223
θ

θζθζθψ
θ
∗

∗∗
∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−Δ

+
Δ+Δ−ΜΔ

−=

V
r
rr

rrr  

( ) ( ) ( )
θ

θψθψ
∂
∂Δ

+−+
∗

∗∗ rV
r
r

0

2

7
2,2

7
1,1

7
8      (8.19) 
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Initially, at , the bioconvection plume is assumed fully developed. The two particles are 

released just beneath the free surface to keep all subgrid nodes located inside the computational 

domain. It is assumed that the particles’ initial velocity is zero. 

0* =t

8.2.4 Numerical Procedure 

In this chapter, following the Chimera method (Chattot and Wang13), two subgrids are created; one 

around each particle, and a global rectangular grid is created for the global flow field, as 

demonstrated in Figs. 8-1b and 8-1c. Governing equations (8.6)-(8.8) for the global grid and the two 

subgrids are solved separately. The exchange of information between the global grid and the subgrids 

is implemented by interpolation. The unknown boundary values of variables on the subgrids are 

computed by interpolating these boundary points onto the known global grid. Therefore, the 

computational problem for the subgrids is transformed to a boundary value problem. The same 

procedure is required for computations on the global grid except that two artificial unknown inner 

boundaries (projected onto subgrids) are created around the moving particles.  

A conservative finite-difference scheme is utilized to discretize the governing equations in both the 

Cartesian and polar coordinate systems. An implicit scheme with Euler backward differencing in time 
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and central differencing in space is utilized. A line-by-line tri-diagonal matrix algorithm and an 

iteration technique with over-relaxation for the number density of microorganisms on the global grid 

and under-relaxation for other variables for both global and subgrid nodal points is used to solve the 

discretized equations. A staggered mesh is utilized in which the streamfunction and vorticity are 

stored in one nodal set while the number density of microorganisms is stored in another nodal set. 

Computations are performed on a 3.0 GHz Intel Xeon processor. Typical CPU time required to 

investigate particles settling from just beneath the free surface to near the bottom of the computational 

domain for a  uniform global mesh and two 7236× 3615×  non-uniform curvilinear meshes is 200 

hours. 

8.3 RESULTS AND DISCUSSION 

Values of physical properties and dimensionless parameters utilized in computations are summarized 

in Table 1. The parameters of microorganisms are identical to those given in Table 1 of Ghorai and 

Hill3. Four cases with different particle initial positions are investigated. The same initial position 

( , 8 ) is used for one particle (denoted Particle 1) in all cases (A-D). In Case A 

Particle 1 is released by itself while in Cases B-D a second particle (denoted Particle 2) is released at 

varing positions. Positions of centers of the particles at t = 0 are summarized in Table 2. Particles are 

released beneath the free surface so that the subgrids are located completely inside the global grid; 

since the vertical position of the free surface corresponds to , the centers of the particles are 

initially located at . 

3.0* −=x .1* =y

0.2* =y

8.1* =y
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Table 8-1. Physical properties, geometrical parameters, and values of dimensionless parameters utilized 
in computations 

Average number density of 
microorganisms 

mn  1012 cells/m3

Density of water 0ρ  310 3mkg  

Density of microorganisms mρ  3101.05× 3mkg  

Volume of a microorganism mθ  16105 −×  m3

Average swimming velocity of 
microorganisms 

mW  410−  m/s 

Diffusivity of microorganisms mD  8105 −×  m2/s 

Gyrotaxis orientation parameter B 5  s 

Kinematic viscosity of the 
suspension 

ν 610−  m2/s 

Height of the computational 
domain 

H 0.01 m 

Width of the computational 
domain 

L 0.005 m 

Dimensionless average 
swimming velocity of 

microorganisms m
mm D

LWW =*  
000.10  

Schmidt number 

m
c D

S ν
=  

20  

Gyrotaxis number 
2L

BD
G m=  

210 −  

Bioconvection Rayleigh number 

m

mmm
m D

gLn
R

νρ
ρθ

0

3Δ
=  

612.5 

Aspect ratio of the 
computational domain  L

H
=λ  

2 

Radius of the particles 
0r  5109 −×  m 

Density of the particles 
pρ  3101.1 × 3mkg  
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Table 8-2. Initial positions of particle centers for Cases A-D 

 Case A Case B Case C Case D 

Particle 1: ( , ) *x *y
(-0.3, 1.8) (-0.3, 1.8) (-0.3, 1.8) (-0.3, 1.8) 

Particle 2: ( , ) *x *y
No Particle 2 

in Case A 

(-0.1, 1.8) (0.1, 1.8) (0.3, 1.8) 

-0.5 -0.25 0 0.25
0

0.5

1

1.5

y*

x*

G

L

M M
-0.5 0 0.5
0

0.5

1

1.5

2

y*

x*

 
(a)    (b) 

-0.5 0 0.5
0

0.5

1

1.5

2

y*

x*
-0.5 0 0.5
0

0.5

1

1.5

2

y*

x*

 
(c)    (d) 

Figure 8-2. Steady-state bioconvection plume: (a) Dimensionless number density of microorganisms, (b) 
Contour lines of the dimensionless vorticity, (c) Contour lines of the dimensionless streamfunction, (d) 

Vector field of fluid velocity 

 173



www.manaraa.com

To quantify the influence of particle sedimentation, a purely bioconvection flow pattern is used as a 

reference (depicted in Fig. 8-2). Figure 8-2a shows the dimensionless number density of 

microorganisms, Fig. 8-2b shows contour lines of the dimensionless vorticity, Fig. 8-2c displays 

contour lines of the dimensionless streamfunction, and Fig. 8-2d shows the vector field of the fluid 

velocity. The bioconvection plume is located in the center of the computational domain. The number 

density of microorganisms takes on its maximum value (a global maximum) in the center of the free 

surface (marked by G in Fig. 8-2a). The fluid flow is directed downward in the center of the domain 

and upward at its periphery, this flow transports microorganisms from the upper fluid layer to the 

bottom of the domain and causes a local maximum of their number density (marked by L in Fig. 8-

2a). The number density of microorganisms takes on its minimum value at the bottom corners of the 

computational domain (marked by M in Fig. 8-2a). 

Data presented in Fig. 8-2 are in good agreement with those plotted in Fig. 8-9 of Ghorai and Hill2.  

In Case A Particle 1 is released by itself in the bioconvection plume. Figure 8-3 shows the 

dimensionless number density of microorganisms, contour lines of the dimensionless vorticity, 

contour lines of the dimensionless streamfunction, and a vector field of the fluid velocity for Case A 

1.0 s after Particle 1 is released. Figure 3a shows that the bioconvection plume is displaced away from 

Particle 1 as the particle settles on the left side of the bioconvection plume. Convective circulations 

are developed on both sides of the particle. The convective circulation on the right side of the particle 

is stronger than on the left (see Figs. 8-3c and 8-3d). From Fig. 8-3a a comparison between t = 0.1 s 

and t =1.1 s shows that the maximum value of the number density of microorganisms is shifted from 

the center of the free surface to the left and is located directly above the particle (the meanings of G, 

L, and M in Fig. 8-3a are the same as that in Fig. 8-2a). To the left of the particle in the upper part of 

the computational domain the fluid velocity is directed downward while in the lower part of the 

domain the fluid velocity is directed upward (the sheer-free boundary condition used at the domain’s 

side walls implies that the horizontal velocity vanishes but the vertical velocity does not). Counter-
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propagating vertical jets (marked by block arrows in Fig. 8-3d) collide to the left of the particle and 

create a horizontal jet directed to the right. Figure 8-7d shows that Particle 1 is displaced by this 

horizontal jet from  to  as it settles.  3.0−=∗x 2.0−=∗x
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(c)    (d) 

Figure 8-3. Case A, t = 1.0 s: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
the dimensionless vorticity, (c) Contour lines of the dimensionless streamfunction, (d) Vector field of fluid 

velocity 
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To see how the two particles affect bioconvection as well as how they influence each other’s 

sedimentation, Particle 2 is released simultaneously with Particle 1. Particle 1 retains the same initial 

position while the initial position of Particle 2 is varied (see Table 8-2). 
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Figure 8-4. Case B: (a) Dimensionless number density of microorganisms, (b) Contour lines of 

dimensionless vorticity, (c) Contour lines of dimensionless streamfunction, (d) Vector field of fluid 
velocity 
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In Case B (Fig. 8-4) Particle 2 is also released to the left of the plume (at ). The 

bioconvection plume is pushed to the right and away from the settling particles. By the end of 

sedimentation, both particles are displaced from the left side of the computational domain to the 

center of the domain. Figure 4a shows that at t = 1.1 s Particle 2 has a lower vertical position than 

Particle 1 reflecting a larger downward vertical velocity. This is because the bioconvection velocity is 

directed downward in the center of the domain and upward at its periphery. Figure 8-4d (t = 0.1 s) 

shows that convective circulation around Particle 2 is stronger than around Particle 1, so that Particle 

1 is displaced to the left in the beginning of the sedimentation process (see Fig. 8-7a). In Fig. 4d (t = 

0.5 s), similarly to case A, counter-propagating jets develop to the left of Particle 1. The fluid velocity 

is downward to the left of Particle 1 in the upper part of the computational domain and upward in the 

lower part of the domain. A horizontal jet develops displacing Particle 1 to the right (as in Case A in 

Fig. 8-3). Another horizontal jet is generated between the two particles because of the collision of the 

two vertical counter-propagating jets marked by block arrows in Fig. 8-4d (t = 1.1 s). This horizontal 

jet pushes Particle 2 to the right. The paths of the particle centers for Case B are displayed in Fig. 8-

7a. As explained above, initially Particle 1 is displaced to the left by the convective circulation caused 

by Particle 2. Later the horizontal jet developed during sedimentation pushes Particle 1 to the right. 

Particle 2 is displaced to the right during the whole duration of the sedimentation process by the 

horizontal jet generated between Particles 1 and 2. Comparing Figs. 8-4a (t = 1.1 s) and 8-3a, it is 

evident that the bioconvection plume has larger horizontal displacement in Case B than in Case A, 

which means that introducing an additional particle on the same side of the plume increases the 

displacement of the bioconvection plume. 

1.0−=∗x

In Case C (Fig. 8-5), Particle 2 is released to the right of the plume, at , thus the convective 

circulations induced by the two particles are more symmetric. Figure 5a shows that the displacement 

of the bioconvection plume to the right is less than in Cases A and B. Particle 1, which is farther away 

from the center of the plume than Particle 2, has more effect on the plume displacement, implying a 

1.0=∗x

 178



www.manaraa.com

direct relation between particle distance from the plume center and influence on plume displacement. 

Obviously, moving the particle far away from the plume will diminish this influence; therefore, it is 

expected that there exists an optimal distance at which the particle’s effect on the plume is the 

strongest. Both particles move to the right during sedimentation as seen in Fig. 8-7b. The distance 

between the particles in Case C is too great for the convection circulation around Particle 2 to have 

any noticeable effect on Particle 1. Recall that this is not so in Case B (Fig. 4d) where the particles are 

closely spaced and the convection circulation around Particle 2 influences Particle 1 by initially 

displacing it to the left (Fig. 8-7a). Particle 2 has larger vertical velocity than Particle 1. The paths of 

the particle centers for Case C are displayed in Fig. 8-7b. Particle 2 exhibits larger horizontal 

displacement than Particle 1 during sedimentation. 

In Case D (Fig. 8-6), the two particles are initially positioned symmetrically relative to the vertical 

centerline of the bioconvection plume, so that for Particle 2, . Sedimentation occurs 

symmetrically and the two particles settle without significantly changing the shape and location of the 

bioconvection plume. Comparing Fig. 8-2 (no particles) and Fig. 8-6a (t = 0.5 s), it is evident that the 

particles have a constrictive influence, locally reducing the width of the plume in a horizontal plane 

where the particles are located. No noticeable horizontal jets are found in Fig. 8-6d, which means that 

the horizontal displacements that the two particles exhibit are caused by bioconvection. The paths of 

particle centers for Case D are displayed in Fig. 8-7c. The two particles move from the periphery of 

the domain toward its center during sedimentation because of bioconvection. The bioconvection flow 

is directed toward the plume’s center in the upper part the domain and away from the plume’s center 

in the lower part of the domain. This explains why the particles are displaced toward the center of the 

domain during sedimentation, moving first with an increasing horizontal velocity and then with a 

decreasing horizontal velocity. 

3.0=∗x
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Figure 8-5. Case C: (a) Dimensionless number density of microorganisms, (b) Contour lines of 

dimensionless vorticity, (c) Contour lines of dimensionless streamfunction, (d) Vector field of fluid 
velocity 
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Figure 8-6. Case D: (a) Dimensionless number density of microorganisms, (b) Contour lines of 
dimensionless vorticity, (c) Contour lines of dimensionless streamfunction, (d) Vector field of fluid 

velocity 
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Figure 8-7. Paths of particle centers for (a) Case B, (b) Case C, (c) Case D and (d) Paths of the center of 
the Particle 1 for Cases A-D 
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The paths of Particle 1 (Cases A-D) are summarized in Fig. 8.7d. Particle 1 exhibits a large horizontal 

displacement in Case A while with the addition of Particle 2 in Cases B-D this displacement 

decreases. The presence of Particle 2 increases the symmetry of convection. The greater the distance 

between the two particles initially, the less Particle 1’s course is altered. 

In order to additionally validate numerical results, Figs. 8-8a and 8-8b displays the dimensionless y-

velocity, , of Particles 1 and 2, respectively, for various cases. The horizontal lines in Figs. 8-8a 

and 8-8b show the particle terminal velocity resulting from the balance of gravitational and viscous 

forces:  

∗
yV

( )( )grF pD
2

00 πρρ −=          (8.21) 

The particle terminal velocity, U, is found by substituting Eq. (8.21) into the following experimental 

curve-fit correlation for a drag coefficient in a flow past a circular cylinder suggested by Sucker and 

Brauer16: 
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where 
ν

02
Re

Ur
=  and  is the viscous drag force on the cylinder. DF

Figures 8-8 show that particle velocities at the end of the sedimentation process approach the particle 

terminal velocity (obtained using experimental correlation (8.22)) in all Cases A-D, which validates 

the obtained numerical results. The settling velocity of the particles at the end of sedimentation is a 

little smaller than the particle terminal velocity because the bioconvection flow creates a “pillow” at 

the bottom of the chamber and slows down sedimentation. At the end of sedimentation, the particle 

velocity of the single particle case (Case A) is closer to U than that of the multiple particle cases 
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(Cases B-D). This is apparently a result of the interaction of the multiple particles with the 

bioconvection plume. 
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Figure 8-8. Dimensionless velocity in the y direction at the center of the particles (a) Particle 1, (b) 
Particle 2 
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8.4  CONCLUSIONS 

Sedimentation of one and two large particles suddenly released in a fully developed bioconvection 

plume is investigated. Particle sedimentation changes the shape and location of the bioconvection 

plume. Settling of a single particle to one side of the plume shifts the bioconvection plume away from 

the particle. Increasing geometric similarity about the plume center for multiple particle 

sedimentation decreases plume displacement while decreasing this similarity increases plume 

displacement. The particles’ settling is also affected by bioconvection. Because of bioconvection, 

particles are pushed in both vertical and horizontal directions. The direct interaction between the 

bioconvection plume and the particles as well as the indirect interaction between the two particles 

depends on the initial position of the particles. The computational results suggest evidence of an 

optimal distance between the vertical symmetry plane of the unit cell and the initial position of the 

particle at which the particle’s effect on the plume is the strongest. Further numerical studies are 

needed to understand whether the introduction of large particles can result in the plume breaking 

apart, forming two or multiple bioconvection plumes. These studies should involve multiple unit 

cells, which would allow investigating the effect of multiple plumes on particle sedimentation. 
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9 CONCLUSIONS 

Bioconvection is a convection motion of fluid that results from the density gradient created by 

collective swimming in a particular direction of motile microorganisms that are heavier than the fluid. 

The formation of bioconvection plume is investigated analytically. Two kinds of possible applications 

that utilizing bioconvection plumes are studied numerically. Applications of bioconvection in the 

pharmaceutical and bio-technological industries to enhance mixing in microvolumes of a fluid is 

modeled as utilizing bioconvection to enhance the mixing of a suspension of small solid particles. 

Large particles sedimentation in bioconvection is simulated as well. The numerical results of large 

particle settling agree well with the analytical results.  

9.1 REMARKS ON FALLING BIOCONVECTION PLUME 
 
Microorganisms may swim in a certain direction due to different stimulus such as oxytactic, 

phototaxis, chemotaxis, and gyrotaxis. The formation of oxytactic bioconvection plume was studied 

analytically in Chapter 2 and 3. These bacteria consume oxygen and swim up the oxygen gradient as 

they require certain minimum concentration of oxygen to be active. Microorganisms concentrate at 

oxygen-rich region that is close to the free surface and cause instability, result in the formation of 

falling plumes that carry cells and oxygen into the lower part of the chamber. Similarity solutions of 

governing equations are obtained. The obtained numerical solutions reveal that the cell concentration 

increases from the periphery of the plume toward its center. 

9.2 REMARKS ON SMALL SOLD PARTICLES SETTLING IN BIOCONVECTION 
 
A possible application of bioconvection is to use bioconvection to slow down settling and enhance 

mixing between particles. Small particles’ sedimentation in bioconvection of gyrotactic 

microorganisms is studied numerically in Chapter 4-6. Gyrotaxis is the behavior typical for algae, 

whose swimming direction is determined by the balance of gravitational and viscous torques. Both 

microorganisms and particles are heavier than water. The particles are small, so that the Brownian 
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diffusion is not completely negligible. It was established that bioconvection makes number density 

distribution of solid particles more uniform (Chapter 4) Sedimentation in bioconvection with two 

kinds of small particles (bidispersed suspensions of small particles) that have different densities is 

investigated in Chapter 5. A useful method of adjusting particle concentration in bio-convection by 

introducing particles of a different density is suggested. A new parameter, called the effective 

diffusivity of solid particles, is defined in Chapter 6 to evaluate the effect that bioconvection has on 

the mixing of solid particles. It is found numerically that that bioconvection is less effective in mixing 

suspensions of heavy particles than it is in mixing suspensions of light particles. 

9.3 REMARKS ON LARGE SOLD PARTICLES SETTLING IN BIOCONVECTION 
 
Settling of one or two large solid particles in a bioconvection flow induced by gyrotactic motile 

microorganisms is numerically modeled. The results of varying the initial positions of large particles 

on the bioconvection flow pattern are investigated. The particle settling changes the shape and 

location of the bioconvection plume. It is found that restricting the size of the computational domain 

to one periodic cell by imposing periodic boundary conditions at the vertical boundaries of the 

domain pushed the particle away from the periodic boundary (Chapter 7). Increasing geometric 

similarity about the plume center for multiple particle sedimentation decreases plume displacement 

while decreasing this similarity increases plume displacement. The direct interaction between the 

bioconvection plume and the particles as well as the indirect interaction between the two particles 

depends on the initial position of the particles. The computational results suggest evidence of an 

optimal distance between the vertical symmetry plane of the unit cell and the initial position of the 

particle at which the particle’s effect on the plume is the strongest (Chapter 8). 

9.4 RECOMMENDATIONS FOR FURTURE WORK 

It is assumed that bioconvection plumes occur periodically. The two-dimensional computational 

domain coinciding with a periodic cell that contains a single bioconvection plume is the typical 
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computational domain in researches of bioconvections. A computational domain that contains two 

bioconvection plumes was investigated. It is very interesting to investigate the large particles settling 

in the bioconvection with computational domain that contains more than two chambers. Large 

particles sedimentation in bioconvection was simulated in 2D model therefore the particles were 

treated as infinite long cylinders. 3D model is highly recommended in future research that the large 

particles are modeled as spheres. 

 

 

 

 

 

 

 

 192


	 LIST OF TABLES 
	 
	 
	1.  INTRODUCTION 
	1.1 BACKGROUND OF BIOCONVECTION OF MICROORGANISMS 
	1.2 RESERCH ON BIOCONVECTION SEDIMENTATION OF SMALL SOLID PARTICLES  
	1.3 RESERCH ON BIOCONVECTION SEDIMENTATION OF LARGE SOLID PARTICLES 
	1.4 INTROUCTION OF PARTS AND CHAPTERS 
	REFERENCE 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 

	PART ONE  
	FALLING PLUME IN BIOCONVECTION OF OXYTACTIC BACTERIA IN POROUS MEDIUM 
	2.  A SIMILARITY SOLUTION FOR A FALLING PLUME IN BIOCONVECTION OF OXYTACTIC BACTERIA IN A POROUS MEDIUM 
	ABSTRACT 
	2.1 INTRODUCTION 
	2.2 PROBLEM DISCRIPTION 
	2.3 RESULT AND DISCUSSION 
	2.4 CONCLUSIONS 
	ACKNOWLEDGEMENT 
	REFERENCES 

	3.  ANALYTICAL INVESTIGATION OF A FALLING PLUME CAUSED BY BIOCONVECTION OF OXYTACTIC BACTERIA IN A FLUID SATURATED POROUS MEDIUM 
	ABSTRACT 
	3.1 INTRODUCTION 
	3.2 SIMILARITY TRANSFORMATION 
	3.3 SERIED SOLUTION FOR SMALL SIMILARITY VARIABLE 
	3.4  NUMERICAL RESULTS AND DISCUSSION 
	3.5 CONCLUSIONS 
	ACKNOWLEDGEMENTS 
	REFERENCES 
	 



	PART TWO 
	INTERACTION BETWEEN MICROORGANISMS AND SMALL SOLID PARTICLES IN BIOCONVECTION SUSPENSION 
	4. THE INTERACTION OF BIOCONVECTION CAUSED BY GYROTACTIC MICROORGANISMS AND SETTLING OF SMALL SOLID PARTICLES 
	ABSTRACT 
	 NOMENCLATURE 
	Greek symbols 

	 4.1  INTRODUCTION 
	4.2  GOVERNING EQUATIONS 
	4.2.1 DIMENSIONAL GOVERNING EQUATIONS 
	4.2.2 DIMENSIONLESS GOVERNING EQUATION 
	4.2.3 INITIAL AND BOUNDARY CONDITIONS 
	4.2.4 NUMBERCAL PROCEDURE 

	4.3  RESULTS AND DISCUSSION 
	4.4 CONCLUSIONS 
	ACKNOWLEDGEMENTS 
	REFERENCES 

	5.  SETTLING OF BIDISPERSED SMALL SOLID PARTICLES IN A DILUTE SUSPENSION CONTAINUNG GYROTACTIC MICROORGANISMS 
	ABSTRACT 
	 NOMENCLATURE 
	Greek symbols 

	5.1  INTRODUCTION 
	5.2 GOVERNING EQUATIONS 
	5.2.1 Dimensional Governing Equations 
	5.2.2 Dimensionless Governing Equations 
	5.2.2 Initial and Boundary Conditions 
	5.2.4 Numerical Procedure 

	5.3 RESULTS AND DISCUSSION 
	H
	L

	5.4 CONCLUSIONS 
	ACKNOWLEDGEMENTS 
	REFERENCES 

	6. INTRODUCING THE CONCEPT OF EFFECTIVE DIFFUSIVITY TO EVALUATE THE EFFECT OF BIOCONVECTION ON SMALL SOLID PARTICLES 
	ABSTRACT 
	 NOMENCLATURE 
	Greek symbols 

	6.1  INTRODUCTION 
	6.2 GOVERNING EQUATIONS 
	6.2.1 Dimensional Governing Equations 
	6.2.2 Dimensionless Governing Equations 
	6.2.3 Initial and Boundary Conditions 
	6.2.4 Nonuniformity and Effective Diffusity 
	6.2.5 Numerical Procedure 

	6.3 RESULTS AND DISCUSSIONS 
	H
	L

	6.4 CONCLUSIONS 
	ACKNOWLEDGEMENTS 
	REFERENCES 


	PART THREE  
	DYNAMICS OF LARGE SOLID PARTICLES IN BIOCONVECTION FLOW CAUSED BY MOTILE GYROTACTIC MICROORGANISMS 
	7. DIRECT NUMERICAL SIMULATION OF SETTLING OF A LARGE SOLID PARTICLE DURING BIOCONVECTION 
	ABSTRACT 
	 NOMENCLATURE 
	Greek symbols 

	 7.1 INTRODUCTION 
	7.2 GOVERNING EQUATIONS 
	7.2.1 Dimensional Governing Equations 
	7.2.2 Dimensionless Governing Equations 
	7.2.3 Chimera Grid Scheme 
	7.2.4 Initial and Boundary Conditions 
	7.2.5 Numerical Procedure 

	7. 3. RESULTS AND DISCUSSION 
	7.4  CONCLUSIONS 

	8.  DYNAMICS OF LARGE SOLID PARTICLES IN BIOCONVECTIVE SEDIMENTATION 
	ABSTRACT 
	 8.1 INTRODUCTION 
	8.2 GOVERNING EQUATIONS 
	8.2.1 Dimensional Governing Equations 
	8.2.2 Dimensionless Governing Equations 
	8.2.3 Initial and Boundary Conditions 
	8.2.4 Numerical Procedure 

	8.3 RESULTS AND DISCUSSION 
	8.4  CONCLUSIONS 
	REFERENCE 

	9  CONCLUSIONS 
	9.1 REMARKS ON FALLING BIOCONVECTION PLUME 
	9.2 REMARKS ON SMALL SOLD PARTICLES SETTLING IN BIOCONVECTION 
	9.3 REMARKS ON LARGE SOLD PARTICLES SETTLING IN BIOCONVECTION 
	9.4 RECOMMENDATIONS FOR FURTURE WORK 




